Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "galaxy mergers"

Sort by: Order: Results:

  • Kostamo, Iida (2023)
    In this thesis, 16 gas-free galaxy merger simulations were run in order to determine the dominant effect that causes the formation of cores, i.e. regions of ”missing light”, in the centers of massive early-type galaxies. The simulations were run on the Mahti supercomputer at the Finnish IT Centre for Science (CSC), using the simulation codes GADGET-3 and KETJU. The merging of galaxies will eventually lead to the merging of their central supermassive black holes (SMBHs). The evolution of a SMBH binary can be divided into three phases: the dynamical friction phase, the three-body interaction phase and gravitational wave (GW) emission phase. After the GW emission phase, the merged SMBH may receive a recoil velocity. To study the effects of these three phases on the formation of the core, three kinds of simulations were run. These include three GADGET runs and thirteen KETJU runs that can be divided into two groups, since eight of the runs had GW recoils enabled. When using only GADGET, the three-body interactions are not modeled due to the softening of gravity. Using KETJU allows for modeling the later evolution of the SMBH binary, including the three-body interaction phase, the GW emission phase and the resulting GW recoil. The initial conditions for the progenitor galaxies were motivated by the galaxy NGC 1600. The same stellar and dark matter profiles were used for each simulated galaxy. Two different SMBH masses were used. One KETJU merger was also run without SMBHs. For the runs with spinning SMBHs, the spin directions and magnitudes were chosen in such a way that different magnitudes of recoil velocity would be achieved. The size of the core can be determined from the brightness profile of the galaxy, assuming a constant mass-to-light ratio. The commonly used core-Sérsic profile was fit to the surface mass density profiles of the merger remnant galaxies. The best-fit parameter values were then used to estimate the sizes of the cores, such as the core radii. The amount of missing mass in the centers of the galaxies, i.e. the mass deficits, were also computed based on the core-Sérsic fits. We found that the mass deficit correlates positively with the mass of the SMBH for all the KETJU runs. Including GW recoils in the simulations was found to increase the mass deficits by roughly the equivalent of one SMBH mass compared to the KETJU runs without the recoils. The formation of cores was the weakest for the GADGET runs, since the cores were created only by the large-scale dynamics. No core was formed in the run without SMBHs, as expected. Thus, we can conclude that SMBHs are essential for the formation of cores in massive early type galaxies, and the largest cores are formed when GW recoils are included in the model.
  • Mattero, Max (2024)
    This thesis studies gas-rich galaxy mergers at redshifts of z ∼ 1-2 using numerical simulations, with a particular focus on the effect of feedback from active galactic nuclei (AGNs). In total, 16 galaxy mergers at redshifts z = 1 and z = 2 were modeled using the simulation codes KETJU and GADGET-3. The simulations were performed on the supercomputer Mahti located at the Finnish IT Centre for Science (CSC). AGN feedback can be described as the radiative and mechanical energy released through accretion, which act to heat and disperse the remaining gaseous material surrounding the central supermassive black hole (SMBH). The feedback mechanisms include, for example, photoionization heating due to high-energy photons and winds and jets driven by the AGN. Numerically, AGN feedback was implemented using two models in this thesis: thermal and kinetic AGN feedback, in which the gas particles are either heated or ‘kicked’, respectively. In addition to AGN feedback, the simulations included metal-dependent gas cooling, stochastic star formation, and stellar feedback. The simulated progenitor galaxies were gas-rich spirals consistent with observed galaxies at redshifts z = 1 and z = 2. The virial masses of the progenitors were set to correspond to typical massive galaxies at their redshifts using the Press-Schechter mass function, while the initial masses for the central SMBHs were set using observed MBH-M⋆ and MBH-σ⋆ relations. The gas fractions and metal abundances of the progenitors were calibrated using observational data at their respective redshifts. The KETJU and GADGET-3 simulations produced very similar results for the overall evolution of a given merger configuration. Consistent with earlier studies, the kinetic feedback was observed to be significantly more effective at removing gas from the galaxies than the thermal feedback. The combined effect of AGN and stellar feedback was observed to strongly suppress star formation, with the star formation of one merger being almost completely shut down. The thermal and kinetic feedback models caused noticeable differences in the orbital evolution of the SMBH binaries. Merger timescales were significantly longer for the SMBHs in the KETJU simulations with kinetic feedback. In general, the merger timescales increased with decreasing initial eccentricity for the SMBH binary. The merger remnants were compared to observed MBH-σ⋆, R1/2-M⋆, fgas-M⋆, and mass-metallicity relations. Overall, the remnants were reasonably consistent with the observed relations. Hence, we can conclude that AGN feedback plays a crucial role in galaxy evolution and that both the thermal and kinetic feedback models are able to produce realistic high-redshift galaxies.