Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "outliers"

Sort by: Order: Results:

  • Viholainen, Olga (2020)
    The Poisson regression is a well known generalized linear model that relates the expected value of the count to a linear combination of explanatory variables. Outliers affect severely the classical maximum likelihood estimator of the Poisson regression. Several robust alternatives for the maximum likelihood (ML) estimator have been developed, such as Conditionally unbiased bounded-influence (CU) estimator, Mallows quasi-likelihood (MQ) estimator and M-Estimators based on transformations (MT). The purpose of the thesis is to study robustness of the robust Poisson regression estimators in different conditions. Another goal is to compare their performance to each other. The robustness of the Poisson regression estimators is investigated by performing a simulation study, where the used estimators are the ML, CU, MQ and MT estimators. The robust estimators MQ and MT are studied with two different weight functions C and H and also without a weight function. The simulation is executed in three parts, where the first part handles a situation without any outliers, in the second part the outliers are in the X space and in the third part the outliers are in the Y space. The results of the simulation show that all the robust estimators are less affected by the outliers than the classical ML estimator, but nevertheless the outliers severely weaken the results of the CU estimator and the MQ based estimators. The MT based estimators and especially the MT and H-MT estimators have by far the lowest medians of the mean squared errors, when the data are contaminated with outliers. When there aren’t any outliers in the data, they compare favorably with the other estimators. Therefore the MT and H-MT estimators are an excellent option for fitting the Poisson regression model.