Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "resistance"

Sort by: Order: Results:

  • Viitikko, Tanja (2023)
    Pathogens are everywhere in nature, so organisms have developed various defense mechanisms in order to defend themselves against the pathogens. Two of the defense mechanisms are known as resistance and tolerance. Resistance describes the host's ability to avoid being infected by the pathogen, while tolerance describes the host's ability to reduce the fitness loss caused by the infection. We assume that investing into resistance reduces the transmission rate of the pathogens and investing into tolerance reduces the host's virulence. Developing the defense mechanisms is costly to the host. In this thesis, we assume that the resources invested into resistance and tolerance are taken away from the host's fecundity. The independent but simultaneous evolution of resistance and tolerance is modeled with an SIS model. The model is studied with the methods of adaptive dynamics. We concentrate on finding continuously stable strategies, which serve as the evolutionary end points for the population. We study the varying ecological parameters to determine which strategies are optimal for the host in different environments. We find that for low values of transmission rate, the hosts favor resistance over tolerance. When the transmission rate increases, resistance is traded for tolerance and the host benefits more from high tolerance. Low values of virulence result in tolerance being favored over resistance. Increasing virulence leads to a change in the defense mechanism as for high values of virulence investing into resistance is more beneficial to the host. The same holds for recovery rate, as tolerance is favored for low values of recovery rate and changed for resistance when the recovery rate increases. Patterns and associations between resistance and tolerance are also studied. Positive correlation between resistance and tolerance is found with low values of transmission rate, low and high values of virulence and high values of recovery rate. Resistance and tolerance correlate negatively with high values of transmission rate, intermediate values of virulence and low values of recovery rate.