Browsing by Subject "waste form"
Now showing items 1-1 of 1
-
(2023)A geopolymer waste form containing gasified ion exchange resin loaded with stable analogues of radionuclides (e.g., Sr, Co, Ni, Cr, Cs) was studied using semi-dynamic batch leaching experiments. The experiments were conducted for 180 days using an alkaline groundwater simulant in a glove box with controlled N2 atmosphere with < 10 ppm CO2 and O2. The experiments were conducted to investigate the leaching behavior of the geopolymer in conditions relevant to a low- and intermediate-level waste repository. The leaching results of the geopolymers showed leaching of cesium, sodium, aluminum, and silicon from the geopolymer, while potassium and calcium in the leachant sorbed to the geopolymer. The leaching and sorption rates were at their highest for the first 28 days of the experiment, before slowing down to a steady state which were maintained until the end of the experiment. This suggests that the geopolymers immobilized the waste analogues effectively with exception of cesium which had leached by 55 wt% of the initial fraction by day 180. The leaching indices of sodium, aluminum, silicon, and cesium were determined as: 9.9 ± 0.38, 10.1 ± 0.47, 10.5 ± 0.40, and 9.1 ± 0.30 respectively. The leaching indices are well above 6, which is considered a minimum value for WAC of cementitious waste forms by USNRC. The solid phase analysis of the geopolymer samples showed both presence of calcium rich secondary phases and increasing calcium concentration in the bulk matrix on the leachant contact surface of the geopolymer. It was concluded that the secondary phases consisted of CaCO3 minerals.
Now showing items 1-1 of 1