Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by study line "Neuroscience"

Sort by: Order: Results:

  • Verle, Maarten (2021)
    Advancements in both calcium indicators and optical instrumentation have led to new in vivo techniques, such as Miniscopes, capable of recording the spatiotemporal activity of multiple neurons during unrestrained behaviour in rodents. With these microendoscopic techniques, neuronal populations can be stably recorded over multiple sessions. As a result, Miniscopes allow for the investigation of a brain region’s changing activity patterns as a result of disease progression or behaviour. Recently, open source Miniscope initiatives have led to affordable and accessible versions of this technique. In addition, the collaborative open-source community facilitates rapidly evolving modifications, implementations and designs. Notwithstanding the potential and ever-increasing popularity of Miniscopes, the technique is still in its infancy and not widespread. This study consisted of a background review and a pilot study attempting to image neuronal ensembles in the central nucleus of the amygdala (CeA) using the open-source UCLA V3 Miniscope in mice. Despite not being able to successfully record neuronal activity in the CeA, the study has made progress in generating a protocol for Miniscope implementation at the Pharmacology department of Helsinki. Moreover, the study proposes different adjustments that might be implemented in the future. With the continuation of a synergistic collaboration with the Department of Psychology at the university of Jyväskylä, it is likely that both departments will be able to effectively implement the Miniscope technique in the foreseeable future.
  • Acosta Leinonen, Johanna Natalia (2019)
    Sleep is one of the most vital functions of newborns and infants, and it is essential for neuronal network development. Therefore, long-term sleep disturbances have been associated with growth delays and behavioral disorders. Commonly reported infant sleep disturbances, such as night awakenings and difficulties falling asleep, cause distress to parents. Yet, the development of infant sleep in the home environment has not been fully elucidated due to lack of objective measurement parameters. In the current study, we assessed the feasibility of a motion sensor, attached to wearable pants, and ECG textile electrodes to monitor sleep-related respiration and heart rate of newborns and infants. First, we compared signals recorded by the motion sensor’s measurement channels to the standard respiratory piezo effort belt’s signal during daytime EEG recordings. According to our results, the motion sensor’s gyroscope proved to measure respiratory rate most accurately, while the ECG signal transmitted by the sensor was reliable in interpretable sections. We then provided wearable garments and smartphones to families with infants to assess overnight home-use. Our results indicate that different sleep states could likely be identified based on respiration fluctuation visible in the gyroscope’s signals. Moreover, the wearable system was considered practical and easy to use by the parents. Future studies should focus on validating the sensor with clinically approved measures, in order to train the algorithms to automatically identify different sleep-wake states. By doing so, the wearable sensor could provide information on natural infant sleep structure development over long time periods. Additionally, clinical validation of the sensor may result in the development of a companion diagnostic tool for infant cardiorespiratory and movement disorders.
  • Kurkinen, Karoliina (2019)
    Semantics is a study of meaning in language and basis for language comprehension. How these phenomena are processed in the brain is still unclear especially in naturalistic context. In this study, naturalistic language comprehension, and how semantic processing in a narrative context is reflected in brain activity were investigated. Subjects were measured with functional magnetic resonance imaging (fMRI) while listening to a narrative. The semantic content of the narrative was modelled computationally with word2vec and compared to voxel-wise blood-oxygen-level dependent (BOLD) brain signal time courses using ridge regression. This approach provides a novel way to extract more detailed information from the brain data based on semantic content of the stimulus. Inter-subject correlation (ISC) of voxel-wise BOLD signals alone showed both hemispheres taking part in language comprehension. Areas involved in this task overlapped with networks of mentalisation, memory and attention suggesting comprehension requiring other modalities of cognition for its function. Ridge regression suggested cerebellum, superior, middle and medial frontal, inferior and medial parietal and visual cortices bilaterally and temporal cortex on right hemisphere having a role in semantic processing of the narrative. As similar results have been found in previous research on semantics, word2vec appears to model semantics sufficiently and is an applicable tool in brain research. This study suggests contextual language recruiting brain areas in both hemispheres and semantic processing showing as distributed activity on the cortex. This activity is likely dependent on the content of language, but further studies are required to distinguish how strongly brain activity is affected by different semantic contents.
  • Lepistö, Santeri (2023)
    Efficient processing of auditory information begins to emerge early in human ontogeny and establishes foundations for learning language from speech exposure. Here we show that repeated exposure to spoken words causes in neonatal brain attenuated neural responses that are linked to language skills at the age of 24 months. In the study, 75 newborn infants were exposed to repeated presentation of two spoken disyllabic pseudowords. During the word exposure, event-related potentials to presented pseudowords were measured with electroencephalography. The study provides three kinds of findings regarding neonatal brain dynamics and repetitive word exposure. Firstly, the results show that continuous exposure to spoken pseudowords modulates neonatal brain activity and can lead to attenuation of neural responses. This neural suppression likely reflects neonates’ early capacity to recognize spoken words and form neural representations of the stimuli through repetition. Secondly, the attenuated neural responses were bound to the presentation of the first syllable and did not occur after presentation of the second syllable. Thirdly, occurrence of neonatal neural suppression was associated with better expressive language skills later, at the age of 2 years. Altogether, the results provide preliminary evidence that neonatal brain responses to word repetition can be utilized to indicate efficiency of learning language from speech exposure and later state of language development.
  • O'Meeghan, Isabella (2024)
    Major depressive disorder (MDD) is characterized by both psychological and physiological changes with debilitating consequences, that lead to significant impairments in daily functioning and overall quality of life. With limited progress in treatment outcomes, there is a growing need to identify robust biomarkers that address the physiological underpinnings of MDD. Combined transcranial magnetic stimulation (TMS) and electroencephalography (EEG) is a means of directly evaluating the function of excitatory and inhibitory systems in the stimulated area, with high spatiotemporal resolution. However, large interindividual variability and presence of artifacts in measurements limit potential use of TMS – EEG for biomarker identification. In this thesis, the aim was to identify optimized stimulation targets in the left dorsolateral prefrontal cortex (L-DLPFC), to observe TMS evoked potentials (TEPs), and to investigate whether these TEP characteristics correlate with subjective depressive symptoms. Firstly, early TEPs in the L-DLPFC (<60ms) were successfully obtained by using TMS mapping, which represent genuine neuronal activity of the stimulated area. Secondly, the present study identified an altered excitation / inhibition balance in MDD. The ratio of the second peak-to-peak over the first peak-to-peak of the TEP waveform significantly correlated with MDD symptoms, as measured by the Patient Health Questionnaire (PHQ-9) and Quick Inventory of Depressive Symptomatology (QIDS). Consequently, this altered ratio has significant potential to be used as an objective biomarker, alongside existing subjective symptom scores.
  • Kalyanaraman, Shringaa (2024)
    Schizophrenia, a mental disorder affecting over 1% of the world’s population, has a 41-65% chance of being acquired in monozygotic twins, and shows a complex heritable pattern. Research has shown the involvement of various neuronal and glial cell types in the disorder’s progression. Recent studies are focusing on cortical interneurons, as clinical features of schizophrenia such as working memory deficits emerge due to the abnormal activity of these cells . The advent of induced pluripotent stem cell (iPSC) technology has made it easier to study schizophrenia disease mechanisms, with studies revealing differences in morphological and physiological properties of cortical interneurons in patients with schizophrenia. In this thesis , the aim was to optimize iPSC-interneuron differentiation protocol and live-cell imaging method suitable for disease modelling. Interneurons were differentiated from iPSCs with overexpression of inducible transcription factor, Achaete-scute homolog 1 (ASCL1). The iPSCs were derived from twin pairs discordant for schizophrenia and from healthy controls. Expression of interneuron-specific markers was verified using RT-qPCR and validated at the protein level by an immunocytochemistry (ICC) assay in the control cell lines first. Additionally, to estimate the formation of neurites and differences in neurite length and branching, the differentiated interneurons from the controls were subjected to live-cell imaging by IncuCyte S3 live-cell imaging system. Imaging parameters such as cell body cluster filter was optimized to visualize the neurites. To study interneuron involvement in schizophrenia, iPSCs from one twin pair discordant for schizophrenia were successfully differentiated. Interneurons strongly expressed Gamma-aminobutyric acid (GABA) neurotransmitter related neuronal markers: glutamate decarboxylase 67 (GAD67) and GABA at protein level. The neurons were identified as somatostatin (SST) subtype GABAergic neurons by their mRNA and protein expression. While it was possible to observe differences in gene expression, there were no clear differences in the morphology of the differentiated cells as well as the localization of markers in comparison to the healthy controls. Further studies should focus on having a protracted time for differentiation where more mature interneurons can be produced by establishing co-cultures with excitatory neurons. This will help replicate the in vivo cortical machinery which in turn will aid in better understanding of disease mechanisms.
  • Iloglu, Zeynep (2024)
    Alzheimer's disease (AD) is a degenerative brain disorder that exhibits deterioration as one gets older. Although much remains to be learned about the pathophysiology of AD, there is strong evidence links amyloid beta (Aβ) plaques, which are responsible for cognitive impairment, to GABAergic interneurons. Model systems are of prime importance for adequately studying the pathophysiology of this disorder; however, existing in vitro models have limitations in producing patient-specific cells. The development of induced pluripotent stem cell (iPSC) technology has provided a novel opportunity for the effective production of disease-relevant cell types while preserving the molecular traits of the patient. In this thesis, the differentiation protocol established by Nicholas et al. (2013) was used to promote the development of interneurons derived from iPSCs. To enhance the efficiency of differentiation, the protocol was modified with the use of small molecules combined in different ways. The end result of the differentiation was characterized using immunocytochemistry (ICC) and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The combination of molecules that produced greater efficiency in differentiation was selected, and the optimized protocol was carried out with iPSCs derived from an AD patient harbouring the APP Swedish mutation. The differentiation of cortical interneurons, demonstrated by the expression of pan-neuronal and specific GABAergic neuronal markers, signifies the successful generation of differentiated interneurons in the context of AD. AD iPSCs upregulated several markers related to AD pathology, such as APP and BACE1. However, the cell lines tolerated the small molecules differently, and thus, the protocol needs more optimization in the future. In summary, iPSC-based differentiation protocols are capable of producing disease-specific cell types that would be helpful in developing accurate AD models for revealing the mechanisms of Aβ pathology.
  • Leinonen, Saija (2023)
    The sense of hearing is dependent on the sensory cells of the cochlea: inner and outer hair cells. The critical functional structure of these cells is the stereocilia bundle, the mechanotransduction (MET) organelle. The outer hair cells (OHCs) are highly vulnerable to environmental assaults, the effects of aging, and gene mutations. This vulnerability is thought to be mediated by challenges in maintaining intracellular calcium homeostasis. Endoplasmic reticulum (ER) stress is a form of cellular stress that was previously shown to cause hair cell impairment. A possibility is that this impairment is mediated by perturbations in calcium homeostasis. In this thesis, the aim was to find out how the OHC calcium homeostasis is affected by specific ER stress-inducing mutations and age in mouse models exhibiting progressive hearing loss. I studied OHC calcium homeostasis in Manf conditional knock-out (cKO) mice under C57BL/6 (B6) strain in which ER homeostasis-promoting protein MANF (Mesencephalic Astrocyte-derived Neurotrophic Factor) is depleted in cochlear hair cells. Previous studies have shown that these mice develop progressive hearing loss that includes OHC loss and prominent stereocilia pathology, stereocilia fusion. By itself, the B6 mouse strain is a model of age-related hearing loss due to a Cdh23 missense mutation that is known to cause progressive hearing loss and, according to earlier evidence, may be a source of ER stress. I studied B6 mice at 6–9 months of age and Manf cKO mice at 2 months of age to comparatively examine changes to OHC calcium homeostasis that may correlate with the changes in the stereocilia bundle morphology and with hearing loss. I studied hearing function by auditory brainstem recordings in vivo. I estimated the functionality of MET channels in OHCs by FM1-43 uptake. I used immunofluorescence microscopy to study subcellular expression of key calcium-buffering and calcium-extrusion proteins in OHCs. I used a novel super-resolution imaging technique, expansion microscopy (ExM), to study stereocilia bundle morphology. OHCs of Manf cKO mice showed changes in calcium homeostasis in all the studied aspects: (1) FM1-43 uptake through MET channels was reduced, (2) the expression of the calcium extrusion pump PMCA2 and its obligate partner, the cell adhesion protein neuroplastin, was decreased, (3) and the expression of calcium-buffering protein oncomodulin was increased. All this data indicated OHC calcium dyshomeostasis. These molecular changes were consistent with the hair bundle pathology—stereocilia fusion—revealed by phalloidin staining of the actin-rich core of the stereocilia followed by ExM imaging. OHCs of 6–9-month-old B6 mice exhibited reduced FM1-43 uptake, yet not to the extent seen in cKO mice, and there were no changes in PMCA2 and neuroplastin expression and no prominent stereocilia fusion. Together, I show in this study that OHC hair bundle dysmorphology is linked with changes in calcium homeostasis in the mouse model of ER stress-induced hearing loss. This is consistent with the fact that calcium dyshomeostasis is an integral part of cellular ER stress. An intriguing, yet unanswered question is whether these changes in stereocilia bundle physiology could actually be the trigger for the death of these sensory cells.
  • Ahvenainen, Ella (2023)
    The developing human hindbrain and its role in neuronal pathogenesis have been relatively difficult to study for ethical reasons. By using the dual-SMAD inhibition and WNT signalling induction, a new method to culture brain organoids to resemble the human hindbrain has recently been established. In this study the new method has been used to detect the developing hindbrain’s response to flaviviral infection. Model virus used in this study is the Zika virus (ZIKV) which is known to alter the development of central nervous system and cause microcephalia. Pathogenic activity of the virus is measured by detecting the morphology of the organoids during infection as well as screening the organoids activation against oxidative stress, in a form of KEAP1/Nrf2-ARE pathway activation. Three different clones of ZIKV, which differ from each other by one amino acid in their non-structural protein 1 (NS1) gene, were used in the infections as well as two different time points of development. Controversially to previous findings on ZIKV infections to brain organoids, our findings show that developing hindbrain-like organoids do not change in shape or size during ZIKV infection. There are no differences in the lack of morphological changes between one-month olds or two months old organoids or between the different ZIKV clone infected organoids. The activation of the KEAP1/Nrf2-ARE pathway was measured by screening the two final products of the pathway, Nqo1 and HO-1. By screening the mRNA levels of these two genes, it showed that different ZIKV clones affect the activation of the KEAP1/Nrf2-ARE pathway in different levels at different times of development. Also, the expression of the same gene can be altered by the age of the organoids. Additionally, the expression of the two genes were different from each other at given time points and in response to the different clones. These findings suggest that the different isoforms of NS1 of ZIKV may alter the developing hindbrain’s response to oxidative stress. Findings also show that the time of the infection can additionally play a critical role to the ZIKV infection. The altered response to oxidative stress may contribute to microcephaly: the oxidation homeostasis of the developing hindbrain is modified, and apoptotic cell death can take place.
  • Gkini, Vasiliki (2021)
    Gliomas are the most common malignant brain tumours. The most aggressive and lethal type of glioma is glioblastoma. It has a dismal prognosis, and, despite aggressive treatment, the average patient survival is 1-2 years. Although glioblastoma has a heavy impact on individuals and their families, as well as on healthcare systems, our current lack of mechanistic knowledge hinders the development of improved treatments and diagnostics. Recent studies showed that glutaminolysis, a metabolic pathway utilizing glutamine to produce α-ketoglutarate, is promoted in tumour cells, suggesting a significant role of α-ketoglutarate concentration in tumour progression. Therefore, I hypothesise that reduction of α-ketoglutarate concentration in glioblastoma might suppress glioblastoma aggressiveness. To address this hypothesis, I focus on another metabolic pathway controlling α-ketoglutarate concentration, namely the GABA metabolism. Here, I show that the expression of ABAT and GAD1, which encode rate-limiting enzymes of the GABA metabolism, is associated with the lower-grade of glioma and a better prognosis for patients. Interestingly the expression of ABAT and GAD1 negatively correlates with the expression of CD109, a glioma stemness marker. Furthermore, suppression of glioblastoma stemness by CD109 silencing induces ABAT and GAD1 expression. Taken together these results suggest that the upregulation of the GABA metabolism reduces glioblastoma stemness and proliferation. In future, I am planning to examine the effect of ABAT and GAD1 overexpression and knockdown on glioblastoma stemness and proliferation, as well as the underlying molecular mechanisms to understand how the GABA metabolism suppresses the glioblastoma progression.
  • Laitinen, Paavo (2022)
    Schizophrenia (SZ) is a neurodevelopmental psychiatric disorder with high heritability. Patients with SZ commonly suffer from sleep problems of different types, some of them with potential underlying abnormalities in sleep oscillations. These changes in sleep are usually accompanied by deficits in cognitive performance. However, the relationship between sleep, cognitive performance and genetic risk factors are not well known in SZ. In this study, patients were selected from a nation-wide SUPER -cohort. Sleep and circadian rhythm of patients with SZ (n = 26) and age-matched healthy controls (n = 11) were followed for a week with actigraphy and sleep diary, combined with word-pair -memory task and polysomnography at the end of the week. The results showed that patients spend more time in lighter sleep and awake during the night than controls. As expected, patients had impaired sleep spindle density compared to controls. Additionally, patient had worse overnight memory consolidation. However, sleep spindle density was not associated with memory performance. Lastly, polygenic risk score (PRS) for long sleep, but not PRS for SZ, predicted lower spindle density in patients, which could be indirect evidence for deviated neurophysiological processes of sleep behind the observed deviations in EEG oscillations among the patients. These results show that, as compared to controls, patients with SZ demonstrate abnormalities in their sleep, which can be seen both in macro- and microstructures of sleep. Further analyses of the interplay between sleep oscillations and genetic risk factors are likely needed to link sleep problems with overnight memory consolidation.
  • Wakade, Anushka (2023)
    Temporal lobe epilepsy (TLE), a condition defined by unprovoked and recurrent seizures originating from the temporal lobe, is among the most ubiquitous of the various forms of epilepsy. Despite being chronic and highly prevalent, the available treatment options concerning the same remains a critical issue. Since the current therapeutic condition of epilepsy requires more development, renewed focus studying its molecular mechanisms and therapies is imminent. One of the longstanding theories trying to decode the molecular perturbations in TLE has been deficits in GABAergic inhibition resulting in abnormal neuronal activation. K+ - Cl- co-transporter (KCC2) activity is vital for maintaining a hyperpolarizing GABA response. The past decades have intimately and causally linked the prognosis of the seizures observed in TLE with deficits in KCC2 functioning. However, the precise mechanisms relevant to the disruption of KCC2 activity are still blurry. Here we show how KCC2 de-stabilization/localization in the neuronal bilayer is a characteristic of epileptic animal tissue. With the help of co-immunoprecipitation assays, western blot, and mass spectrometry, we found that in normal healthy brain tissue, GM1 ganglioside present in the membrane has specific and direct interactions with the KCC2 cotransporter. However, in the pilocarpine model of TLE, the interaction of this complex was significantly disturbed, primarily in the hippocampus and to some extent in the cortex. Our results act as an extension to previous research which stated that the structural association of the KCC2 clusters with neuronal lipid rafts is crucial for the functionality of the KCC2 cotransporter. Having learned about the unique nature of the pathophysiology of TLE, it is imminent to note that additional research in the direction of studying its biochemical pathways is required. The findings of this experimental study support the claim that KCC2 and GM1 as a complex are closely associated in the epileptic conditions and hence, this research paves the way to further explore the role of KCC2 and GM1 as a consequential complex in the pathophysiology of TLE.
  • Erkkilä, Emma-Helka (2022)
    Faculty: Faculty of Biological and Environmental Sciences Degree programme: Master’s Programme in Neuroscience Study track: Neuroscience Author: Emma-Helka Erkkilä Title: The brain physiology of stress and the effects of burnout on executive functions Level: Master’s thesis Month and year: 08/2022 Number of pages: 35 Keywords: executive functions, emotion, cognition, stress, burnout Supervisor or supervisors: Docent Kaisa Hartikainen and Lic.Med. Mia Pihlaja Where deposited: Helsinki University Library Additional information: Abstract: BACKGROUND- Burnout as a result of prolonged and excessive stress may impair higher order cognitive functions of the brain such as executive functions and their efficiency. This Master's thesis examines the effects of chronic stress on the brain, more specifically the effects of burnout on executive functions. The aim of this study was to specifically research the effects of burnout on executive and emotional functions and their interaction. The research was conducted at the Behavioral Neurology Research Unit, Tampere University Hospital as part of Sustainable Brain Health project funded by the European Social Fund. MATERIAL AND METHODS- 54 voluntary examinees of whom 51 were analyzed. The examinees were divided into two groups based on BBI-15 survey (27 suffering from burnout and 24 control subjects without burnout). The examinees performed a computer-based Executive reaction time (RT) test, during which a 64-channel electroencephalogram (EEG) was recorded. In additions all examinees received alternating transcutaneous vagus nerve stimulation (tVNS) and placebo stimulation. From the Executive RT test, we obtained objective measures reflecting the efficiency of executive functions (RT and total errors) and specific executive functions such as working memory, inhibition and attention. Additionally, the emotional stimulus included in the test enabled the assessment of the emotional functions and the interaction between emotional and executive functions. The EEG and tVNS results were not in the scope of this master’s thesis, and they will be reported later on. RESULTS- The results of this thesis are preliminary. Distinct positive correlation was observed between burnout assessment based on the BBI-15 survey and the results of the BRIEF-A self-report which measures the subjective experience of challenges in executive functions in daily life. There was no statistically significant (p<0.05) difference between the groups in RTs or errors made in the Executive function RT test. Instead, the groups differed on how the threatening emotional stimulus affected the accuracy of responses. Subjects suffering from burnout made less errors with a threatening emotional stimulus compared to a neutral stimulus and vice versa the control subjects made more errors with the threatening emotional stimulus compared to neutral. This difference was statistically significant (p=0,025). DISCUSSION- Challenges experienced in everyday executive functions were linked with burnout. However, RTs and errors in the Executive reaction time test did not correlate with the severity of the burnout nor were the self-evaluated problems in executive functions depicted in the test performance. Instead, the subjects suffering from burnout differed from the control group in how the threatening stimulus affected the accuracy of responses in the test. It is possible that the subjects suffering from burnout benefit from the increase in arousal caused by the threatening emotional stimulus which was shown as improved accuracy of responses when there was a threatening stimulus, whereas the control group's accuracy of responses was disrupted by the threatening stimulus. We speculate that if the control group’s baseline level of arousal was optimal then the threatening emotional stimulus may have increased arousal to suboptimal level causing decrease in performance. Subjectively experienced challenges in executive functions and objective changes in the interaction between emotions and the executive functions were observed in the study. In conclusion, burnout causes changes in executive functions.
  • Varga, Áron Bendegúz (2024)
    Cranial windows are commonly used in neuroscience for direct brain access, but they require skull removal which can lead to neuroinflammation, potentially affecting experiment outcomes. As the nature of the window varies from experiment to experiment along with parallel treatments, it is of particular interest to map the quality and extent of the resulting brain inflammation on a case-by-case basis to have a better understanding of inflammation-related confounding factors in future experiments. As the focus of our future experiments is on finding electrophysiological biomarkers of depression employing state-of-the-art in vivo electrophysiological tools through a cranial window, we would like to characterise the extent of inflammation linked to the cranial window of interest in a mouse model of depression. To achieve this, we implanted mice with a soft cranial window and afterwards, treated them with corticosterone for a month. The animals were sacrificed and astrocytic glial fibrillary acidic protein (GFAP) and microglial ionized calcium-binding adapter molecule 1 (IBA) were labelled on coronal brain sections and imaged using a confocal microscope. We quantified the percentage of GFAP+ and IBA+ pixels on brain slices as measures of neuroinflammation using an automatic global thresholding-based approach and a semi-automatised machine-learning-based approach of the QUINT workflow. Our thresholding-based analysis revealed a significant elevation in GFAP-positive pixels, indicative of astrogliosis, in mice subjected to both cranial window implantation and corticosterone treatment compared to controls. However, no significant changes in microglial reactivity were observed under similar conditions. Importantly, it appears that the cranial window alone did not evoke long-lasting brain inflammation and corticosterone only slightly affected astrocytic reactivity. And despite results using the QUINT workflow presented some confounds, our results provide important considerations for future experiments employing a combination of soft cranial window and chronic corticosterone treatment, but more research is needed to enhance the generalisability of our findings.
  • Schubert, Sofie (2019)
    Understanding the link between the gut microbiota, diet and the enteric nervous system is of significant importance in the prevention of gastrointestinal disorders. The aim of the study was to answer two questions: Firstly, is butyrate able to stimulate the luminal release of serotonin? Secondly, in which parts of the gastrointestinal tract does this possibly occur? These questions are of interest, due to the importance of the serotonergic signalling in the enteric nervous system. We created a luminal perfusion system to investigate the effect of butyrate in the gastrointestinal tract of male Wistar rats (500-550g). We isolated the stomach and 4 cm long segments of the duodenum, jejunum and colon. To our knowledge this form of physiological ex vivo studies investigating the entire gastrointestinal tract have not been done previously. The isolated stomach and the isolated intestinal segments were luminally perfused with 100 mM butyrate for 10 min respectively 45 min. The tissues were homogenized after the luminal perfusion. Serotonin and its main metabolite 5-hydroxyindoleacetic acid (5-HIAA) were assayed using commercial ELISA kits. Our results showed that butyrate significantly stimulates the release of 5-HIAA in the stomach, duodenum, jejunum and colon. Butyrate seems also to have a positive trend-effect on the release of serotonin itself in the stomach, duodenum, jejunum and colon. Although, there is a future potential for preventing gastrointestinal disorders with the help of diet and gut microbiota, the possible clinical significance of our results should be considered carefully.
  • Srinivas, Sanjana (2024)
    The mammalian circadian clock is critical to physiological homeostasis and oversees many important processes like sleep and nociception. Chronic pain, particularly, neuropathic pain (NP) is defined as pain caused by nerve injury and is commonly studied in rodents using the spared nerve injury (SNI) model. The SNI model strongly mimics NP pathology by causing hypersensitive pain responses. As pain and the circadian rhythm are actively linked (as proven by diurnal fluctuations in pain sensitivities in individuals with NP), these responses can disrupt overall well-being and increase an individual’s predisposition to diseases like cancer and depression. Therefore, avenues to discern the workings of the circadian clock have been explored, and some include the use of small-molecule modulators like TH301, that regulate specific core circadian genes. In this study, we explored the possible role of TH301 in normalizing disrupted circadian rhythms in a rodent model of NP, while also examining its potential as an analgesic agent.
  • Lipponen, Aino (2020)
    Spinal cord injury (SCI) in human patients is the most expensive clinical condition worldwide, restricting individuals’ ability to manage with daily-life activities independently. With very limited available treatment possibilities, the understanding and validating of regenerative mechanisms and treatment options in animal models is crucial for their translation to clinical practice. The majority of SCIs in human patients are contusive in the cervical level of the spinal cord. However, thoracic injury rodent model is more commonly studied, with only recent studies working with cervical contusion injury model. Chondroitin sulphate proteoglycans (CSPGs), and especially their CS chains, are thought to be the major inhibitory structures for neurite regeneration after SCI. However, current research has led to a new idea that the inhibitory effect of CS chains can be reversed to regeneration enhancing by heparin-binding growth-associated molecule (HB-GAM). This endogenously secreted molecule is highly up-regulated in the central nervous system (CNS) during postnatal development, but in the adult CNS the expression is down-regulated. This suggests that postnatal-level concentrations might be needed for inducing neurite regeneration in adult CNS. In this study, HB-GAM treatment was tested on both cervical hemicontusion and hemisection injury models. Here we show that repeated intrathecal injections of HB-GAM were sufficient to increase grey matter myelin optical density in mouse hemicontusion injury model, and partly induce functional recovery in hemisection model. Obtained anatomical evidence suggests that enhanced myelination is potentially involved in the repair mechanism of HB-GAM. The connection between HB-GAM treatment and functional recovery, and also other mechanisms of HB-GAM-induced regeneration need further exploration. In broader perspective, the results are promising for translation of a novel treatment approach to clinical use.
  • Partanen, Paula (2022)
    Research conducted on neural oscillations have paved the way to unravel the complexities of the brain dynamics underlying behavior and cognition. Neuronal oscillations characterize neuronal activity and processing at all spatial scales from neuronal microcircuits to large-scale brain dynamics and hence link cellular and molecular mechanisms to circuit dynamics underlying behavior. Large-scale oscillations and their inter-areal synchronization can be identified from in vivo electrophysiological data from animal models as well as from human magneto- and electroencephalography (M/EEG) data. Large-scale oscillation dynamics identified from human M/EEG data has been critical for resolving whole-brain oscillation dynamics view but is hindered by the indirectness of the measures. In contrast, rodent in vivo electrophysiology has been conventionally used to resolve oscillation dynamics locally in brain microcircuits. Although these measurements yield critical information of the mechanisms behind local oscillation dynamics, they are difficult to link with whole-brain dynamics view obtained from human M/EEG data. The newly established setup at the Neuroscience Center aims overcome these limitations and allows the measurements directly from the brain of awake head-fixed mice with over 1000 channel measuring simultaneously from both cortical and subcortical structures. This Master’s thesis project objective was to obtain proof-of-concept data to characterize oscillation dynamics during resting-state (RS) from awake behaving mice and to investigate whether these dynamics could be modulated by the manipulating E/I balance. More specifically, the current project aimed to investigate the oscillatory profile of the default-mode network (DMN) activity while manipulating the E/I balance with pharmacological mediums. Electrophysiological data was collected from RS activity from awake mice with two µECoG grids comprising together 512 channels and two laminar Neuropixel probes with each consisting 348 channels. The areas of interest were targeted to capture the DMN activity, covering anterior cingulate cortex (ACC), secondary motor cortex (M2), retrosplenial areas, visual cortical layers, pre- and infralimbic areas, hippocampal areas such as CA1 and dentate gyrus as well as lateral and posterior thalamic areas. The network activity was modulated with pharmacological mediums (sedative, stimulant, control) administered in low acute doses to see their effects on the oscillatory profile. Data from four mice were included into this Master’s thesis work and each mouse was recorded first for 30-minute daily baseline, following a 30-minute pharmacological measurement. This Master’s thesis included the data obtained from the µECoG data to the data analysis focusing on the large-scale cortical activity of the DMN. Power spectral density analysis showed a prominent alpha peak, also seen in humans, across condition with a mild decrease in volume in the stimulant condition. Synchronization was assessed with imaginary part of the phase locking value (iPLV), and the results showed increased synchronization in the stimulant condition and decreased in sedative condition in comparison to the control condition. The amplitude correlation coefficient showed also expected results in both pharmacological conditions, namely higher correlation in stimulant and lower in sedative. This project was able to obtain valuable information of the newly established in vivo electrophysiology setup and the results were in line with our expectations. This promising outcome solidifies the translational potential of the setup and its ability to serve as a translational counterpart in numerous research designs in health and disease.
  • Vasques Ojeda, Ariel Olivia (2024)
    Faculty: Faculty of Biological and Environmental Sciences Degree programme: Master’s Programme in Neuroscience Study track: Neuroscience track Author: Ariel Olivia Vasques Ojeda Title: The effects of sleep disruption on sleep architecture and microglial morphology Level: Master’s thesis Month and year: May 2024 Number of pages: 50 pages Keywords: Sleep disruption, microglia, frontal cortex, adolescents, older mice, EEG, microglial morphology, hippocampus Supervisor or supervisors: Birgitte Rahbek Kornum, Christine Egebjerg Jensen Where deposited: University of Helsinki library Additional information: Abstract: Although sleep is an essential biological need for all beings, we have yet to understand why exactly it is a crucial aspect of our lives. The loss of sleep is seen as a natural occurrence that increases as we begin to age. The consequences of sleep deprivation are not yet fully understood but have been associated with a range of detrimental effects on comorbid conditions, including reduced quality of life, cognitive impairments, immune suppression, and various other adverse outcomes. The role of microglia in response to sleep deprivation is a discussion that is also yet to be understood, but that can be a pivotal point for future understanding. This master's thesis investigates the impact of sleep deprivation on sleep architecture in aged mice and microglial activation in adolescents. The study aims to understand how sleep disruption affects these age groups, focusing on microglial morphology and overall sleep patterns. Using EEG/EMG recordings, sleep disruption was induced by introducing novel objects for four hours daily at ZT 2-6 over seven days. The study found that older mice experienced a shift in their sleep patterns, with significant changes in NREM and REM sleep occurring during the dark phase, highlighting the influence of the circadian rhythm. In adolescent mice, sleep disruption led to increased morphological changes, suggesting a reduction in microglial activity or an intermediary state of activation. The results underscore the importance of sleep in maintaining neural homeostasis and highlight age-dependent differences in the response to sleep loss. The study discusses the implications of these findings for understanding the neurobiological mechanisms underlying sleep and its disruption, particularly in relation to microglial function and brain health. 
  • Iivanainen, Vilma (2021)
    Recent studies have associated ER stress with various types of hearing loss, such as drug- and noise-induced, age-related, and hereditary hearing loss. However, the research has mostly focused on auditory sensory cell (hair cell) death, and it is not well understood if other molecular mechanisms can drive ER stress-dependent hearing loss. We used Manfflox/flox;Pax2-Cre conditional knockout (cKO) mice under the C57BL/6J (B6) mouse strain to study the effects of genetically-induced chronic ER stress on hearing function. In these mice, the gene coding for mesencephalic astrocyte-derived neurotrophic factor (Manf) has been silenced specifically in the cochlea. Manf is thought to act as an ER homeostasis regulator, and it has shown cytoprotective properties in different disease models both in vitro and in vivo. However, Manf’s mode of action is still poorly understood and even less is known about its function in the inner ear. Previously, cKO mice were found to upregulate ER stress markers in the cochlear hair cells. These mice develop progressive high-frequency hearing loss characterized by high-frequency outer hair cell (OHC) death. However, they have elevated hearing thresholds already at postnatal day 22 (P22) before any OHC death takes place and have elevated hearing thresholds in hearing frequencies where OHCs are retained. Therefore, there has to be another pathological mechanism besides OHC death accounting for the elevations in their hearing thresholds. Hence, we wanted to study the effect of ER stress on the outer hair cell hair bundle structure. The hair bundle is located at the apical pole of the hair cells, and it consists of filamentous actin (F-actin)-filled stereocilia. In mechanotransduction (MET), sound stimuli-induced motions of cochlear fluids cause stereocilia to deflect towards the tallest stereocilia row, allowing for depolarization of hair cells and transformation of mechanical force into electrical signal. Therefore, hair bundle is an essential structure for the hearing function. We used scanning electron microscopy (SEM) and fluorescent microscopy to study OHC hair bundles of cKO mice. We saw disorganization of the bundle structure already at P22. It progressed with age and advanced to strong stereocilia fusion by P56. At this age, all of the high-frequency OHCs of cKO mice displayed stereocilia fusion. We used cochlear whole mounts and immunostainings to study the protein composition of OHC stereocilia of Manf-deficient mice. The base of the stereocilia, termed as the tapering region, contains proteins that link the plasma membrane of stereocilia to their F-actin core, ensuring the cohesion of individual stereocilia. Mutations in these proteins have been associated with stereocilia fusion and hair bundle disorganization. At P56, we saw that stereocilia tapering region proteins radixin (RDX) and myosin 6 (Myo6) were mislocalized from the tapering region towards the apical tips of stereocilia in the high-frequency OHCs of cKO mice. Additionally, we saw that PTPRQ – a tapering region protein that is under normal conditions expressed only in the IHCs of mature cochlea – was upregulated in OHCs of cKO mice, yielding an expression pattern similar to RDX and Myo6. In addition, we used the F-actin probe phalloidin to quantitatively compare F-actin densities in the cuticular plates of cKO and WT mice. Cuticular plate is a structure responsible for attaching stereocilia to hair cell body. It consists of a dense F-actin network and prior studies have associated defects in the cuticular plate composition with hearing loss and stereocilia bundle abnormalities. We found a significant decrease in phalloidin staining intensity in the cuticular plates of high-frequency OHCs of cKO mice, indicating that their cuticular plate F-actin rigidity had been reduced. Together our data shows that Manf deficiency promotes diverse impairments in the OHC hair bundles, consequently inducing hearing loss. To conclude, our study presents novel insights into the complexity of ER stress-induced cochlear pathology. We show that ER stress impairs MET by inducing structural changes in the OHC hair bundle. It appears to be the major reason for hearing loss in the cKO mice, rather than hair cell death. In the future, the impact of Manf deficiency to the inner ear should be further studied. For example, younger and aged cKO mice could be studied to better characterize the progression of Manf deficiency-induced cochlear pathology and hearing loss. Similarly, Manf’s effect on hearing should be studied in other ER stress models to determine its role in the hearing function.