Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by master's degree program "Ilmakehätieteiden maisteriohjelma"

Sort by: Order: Results:

  • Mikkola, Johannes (2020)
    Local mountain winds have a diurnal cycle of flowing up the slopes and valleys daytime and down nighttime. It is important to improve the understanding on these thermally driven winds, because they have a major role in pollution transport in mountain areas, which are highly sensitive for air-quality problems. This thesis determines if the slope and valley winds in the Khumbu valley, Himalayas, are driven by the textbook mechanisms. By the textbook mechanisms the slope and valley winds are driven by horizontal temperature differences caused by uneven heating over an area of complex terrain. Slope winds are driven by the horizontal air temperature difference in the slope surface vicinity when the slope surface is heated or cooled. Valley winds are driven by the uneven heating caused by the air volume difference between the valley and above an adjacent plain. If the valley slopes narrow and the floor is elevated towards the head of the valley, both the valley and slope wind mechanisms drive the winds along the valley. The slope and valley winds in the Himalayas are studied using Weather Research and Forecasting model (WRF), that is run for 5 days period in December 2014 with 1 kilometer horizontal grid spacing and 61 vertical levels. Earlier studies have shown that WRF is capable of simulating the thermally driven mountain winds on this resolution with the length scales of the Khumbu valley topography. Horizontal gradient of air temperature and slope wind component at the slope surface have a matching daily cycle in the lower and middle parts of the valley. The boundary layer air volume decreases from the mouth of the valley towards the middle parts of the valley indicating the valley wind mechanism. The daytime potential temperature profiles yield that also the slope wind mechanism drives the winds along the valley. The slope winds have a textbook daily cycle in the lower and middle parts of the valley and the analysis yields that they are driven by the slope wind mechanism. In the upper part of the valley the thermally driven slope winds are dominated by synoptic scale channelling and gravity wave developing into the valley. The daytime up-valley winds are driven by both valley wind mechanism and slope wind mechanism due to the valley narrowing and elevation towards the head of the valley, respectively. Nocturnal along-valley winds are weak less than 0.5 meters per second flowing up or down-valley. The wind patterns are similar to what is shown in earlier studies done in Khumbu valley.
  • Keränen, Tuukka (2021)
    A stably stratified layer is often observed to form near the surface during nighttime. If the terrain is not flat, cold air near the surface can start to flow down the slope despite the wind direction above the stable layer being different. This slope flow is called katabatic wind. Katabatic winds are challenging for eddy covariance measurements that are commonly used to calculate the fluxes of gases and energy between the soil and the atmosphere. If the measurement is done above the canopy, the katabatic wind may lead to significant advective transport of gas and energy not detected by the measurement. Therefore eddy covariance measurements might underestimate the fluxes by a significant amount. Therefore it is important to understand the mechanisms of katabatic flow so that the effects of it can be taken into account when eddy covariance measurements are used in sloping terrain. This thesis determines how the katabatic flow within a boreal forest canopy in Hyytiälä, Finland depends on the static stability and depth of the stable layer within the canopy. The measurements are also compared to a simplified theory to find out how well the existing formulations of katabatic flow within canopies describe the observed conditions. Wind measurements done with sonic anemometers and temperature measurements done with distributed temperature sensing system during June-October 2019 are analyzed in this thesis to form understanding of the vertical profiles of temperature and wind within the canopy layer at the measurement site. In addition to the wind and temperature measurements, solar radiation measurements are also used to find the dominant driver for the formation of the stably stratified canopy layer. The measurement site represents typical Finnish Scots pine forest and has sloping terrain with main slope of 2° in the north-south direction. This study found evidence of katabatic northerly flow forming at the measurement site during stable nights. However, this study could not find a relation between the depth of the stable layer and strength of the katabatic flow. The katabatic flow was observed to get stronger in the open trunk space with increasing static stability within the canopy layer. The results of this study suggest, that katabatic flow follows the simplified theory well within the upper part of the canopy, where the majority of the foliage is. At lower levels within the open trunk space, the simplified model greatly underestimates the flow speed.
  • Tuovinen, Saana (2019)
    Observations of frequent new particle formation events have been made in severely polluted environ- ments in China. In theory this should not be possible because of the large condensation sink caused by large concentrations of particles. This thesis tries to shed light on reasons why this happens by investigating heterogeneous nucleation in different conditions, for different vapours and seed particles. Especially of interest are those situations where heterogeneous nucleation is considered to be ineffective which would affect the condensation sink of vapours. Theoretical modelling was used to investigate heterogeneous nucleation and measured data was analyzed to complement theoretical results. In this thesis, special focus is on contact angle θ of heterogeneous nucleation, a variable that depends on surface tensions of the vapour and the seed particle the vapour condenses on. θ has a strong effect on the heterogeneous nucleation probability and the larger it is the less likely nucleation is to occur. Many situations where there was at least in theory little heterogeneous nucleation were found. Conditions similar to real atmospheric conditions were investigated and contact angles needed for heterogeneous nucleation to be ineffective for a vapour were determined. Because θ is related to chemical properties of the seed particle, aerosol chemical composition was also investigated alongside with the corresponding condensation sink and particle formation rates using data measured in Beijing, China. This was done in hopes of finding indications of if and how effective condensation sink and aerosol chemical composition are related. However, no clear connection was yet found. Influence of ineffective heterogeneous nucleation on effective condensation sink was considered. It was found that if ineffectiveness of heterogeneous nucleation affects the condensation sink, effective sink can in theory be significantly smaller than condensation sink. Thus, ineffective heterogeneous nucleation due to multiple factors explored in this thesis could in part explain why new particle formation events are observed even in heavily polluted areas.
  • Taurinen, Janina (2021)
    Maapallon keskilämpötila on ollut selkeässä nousussa jo noin sadan vuoden ajan ja nousun odotetaan jatkuvan tulevaisuudessakin. Suurimman osan eri kuukausien keskilämpötiloista on ennustettu nousevan ilmastollisiin vertailuarvoihin suhteutettuna normaalia korkeammiksi. Lämpeneminen vaikuttaa etenkin korkeiden leveysasteiden talviin. Muutos Suomen lämpötiloissa sekä pohjois- ja eteläosien välisessä lämpötilaerossa on huomattavasti suurempi talvisin kuin kesäisin. Talvi 2019-2020 oli Suomessa ennätyksellisen lämmin. Tässä tutkimuksessa pyrin kartoittamaan kuinka poikkeava talvi 2019-2020 oli lämpötilojen suhteen edellisten 30 talven muodostamaan vertailukauteen verrattuna. Tutkimuksessa tarkastellaan kuutta kuukautta, loka-maaliskuu, ja vertailukauden on valittu olevan tammikuusta 1989 – maaliskuuhun 2019. Lisäksi käsitellään korkeiden lämpötilojen todennäköisimpiä aiheuttajia tarkastelemalla valittuja perusmuuttujia; paine, geopotentiaalikorkeus, ominaiskosteus, ilmapilarin kokonaiskosteus ja yläilmakehän tuulen nopeus ja suunta. Lämpimimmät poikkeamat havaittiin joulu-helmikuussa, kun lounaasta puhaltava suihkuvirtaus toi mukanaan lämpimiä, kosteita ilmamassoja sekä voimakkaita matalapaineita. Tammikuu 2020 rikkoi monilla asemilla lämpöennätyksiä ja Etelä-Keski-Suomessa vertailukauden keskiarvot ylittyivät jopa 7-8 asteella. Helmikuu oli mittaushistorian toiseksi lämpimin. Loka-marraskuu sitä vastoin olivat vertailukautta noin asteen viileämpiä ja maaliskuun puolella poikkeuksellinen lämpimyys tasoittui lähelle vertailukautta. Runsaan matalapainetoiminnan sekä ilman korkean kosteussisällön vuoksi sadetta tuli läpi talven paikoin jopa kaksi-kolminkertaisesti verrattuna keskiarvoihin.
  • Strömberg, Jani (2021)
    Air temperatures are commonly higher in urban environments compared to rural ones. The energy input of solar radiation and its storage in urban surfaces changes the way the surface interacts with the atmosphere through turbulent fluxes and mixing processes. The complexity of radiative properties combined with the effect of urban geometry makes the magnitude of the effect radiation has on the dynamics of boundary layer flow an important area of study. The aim of this study is to understand and quantify how much the radiative processes alter the flow field and turbulence in a real urban street canyon in Helsinki. The model used is the large-eddy simulation (LES) model PALM, which solves for the flow and the most relevant atmospheric scales that describe interactions between the surface and atmosphere. An additional library called RRTMG (Rapid Radiative Transfer Model for Global Models) is used in this study to provide the radiation input impacting the boundary layer flow. Two embedded surface models in PALM, USM (Urban Surface Model) and LSM (Land-Surface Model) are used to solve the local conditions for radiative balance based on the output of RRTMG. Two model runs are made (RRTMG On & RRTMG Off), both identical in terms of the large-scale forcing boundary conditions and land-use data, but with additional radiation input in RRTMG On. The results show that radiation alters the low level stratification of potential temperature, which leads to more unstable conditions. Near-surface air temperatures within the canyon were increased by 3.9 C on average. Horizontal wind speeds increased by 76 % close to the ground compared to RRTMG Off. RRTMG On also showed a change in the structure of the topographically forced canyon vortex, as the low wind conditions enabled the radiative effects to have a stronger effect in its forcing. The center of the vortex changed in location more towards the center of the canyon and the vertical motions on opposing sides of the street were strengthened by 0.15 m/s in both vertical directions. Additionally both mechanical and thermal turbulence production increased with RRTMG On, while the thermal production remained smaller by one magnitude compared to mechanical production within Mäkelänkatu. Higher wind speeds and their variance gave rise to increased mechanical production of turbulence and radiative effects increased the thermal production. More research is however needed to determine thermal turbulence's role in situations with different meteorological conditions or in other cities.
  • Häkkinen, Ella (2020)
    Atmospheric aerosol particles affect Earth’s radiation balance, human health and visibility. Secondary organic aerosol (SOA) contributes a significant fraction to the total atmospheric organic aerosol, and thus plays an important role in climate change. SOA is formed through oxidation of volatile organic compounds (VOCs) and it consists of many individual organic compounds with varying properties. The oxidation products of VOCs include highly oxygenated organic molecules (HOM) that are estimated to explain a large fraction of SOA formation. To estimate the climate impacts of SOA it is essential to understand its properties in the atmosphere. In this thesis, a method to investigate thermally induced evaporation of organic aerosol was developed. SOA particles were generated in a flow tube from alpha-pinene ozonolysis and then directed into a heated tube to initiate particle evaporation. The size distribution of the particles was measured with parallel identification of the evaporated HOM. This method was capable of providing information of SOA evaporation behaviour and the particle-phase composition at different temperatures. Mass spectra of the evaporated HOM and particle size distribution data were analyzed. The obtained results suggest that SOA contains compounds with a wide range of volatilities, including HOM monomers, dimers and trimers. The volatility behaviour of the particulate HOM and their contribution to SOA particle mass was studied. Furthermore, indications of particle-phase reactions occurring in SOA were found.
  • Virta, Henrik (2020)
    TROPOMI eli TROPOspheric Monitoring Instrument on lokakuussa 2017 Sentinel-5 Precursor -satelliitin mukana laukaistu spektrometri, joka mittaa useiden eri ilmakehän hivenkaasujen pitoisuuksia, aerosoleja sekä pilviä. Se on samalla myös uusin ja resoluutioltaan tarkin typpidioksidin (NO2) pitoisuuksia mittaava satelliitti-instrumentti. NO2:ta havainnoivien satelliitti-instrumenttien mittaukset perustuvat ilmakehästä siroavaan auringon valoon, minkä perusteella niiden algoritmit laskevat ilmakehässä olevien NO2-molekyylien lukumäärän käyttäen apuna erilaisia syötetietoja. Saadussa tuloksessa on tämän vuoksi paljon erilaisia virhelähteitä, minkä vuoksi satelliitti-instrumenttien mittausten oikeellisuutta seurataan jatkuvasti vertaamalla niitä erilaisiin referenssiaineistoihin. Tällaista seurantaa kutsutaan myös instrumentin validoinniksi, ja se on erityisen tärkeää uusien instrumenttien kuten TROPOMIn tapauksessa. Tässä työssä validoidaan TROPOMIn NO2-mittaukset käyttäen Helsingin Kumpulassa sijaitsevan Pandora-referenssi-instrumentin mittauksia. Tämän lisäksi TROPOMIn herkkyyttä lähellä maanpintaa tapahtuville pitoisuusvaihteluille arvioidaan vertaamalla sen mittauksia Kumpulassa sijaitsevan in situ -ilmanlaatuaseman mittauksiin. Lopuksi arvioidaan TROPOMIn ja Pandoran mittausten ja niiden välisen vastaavuuden riippuvuutta rajakerroksen paksuudesta ja siellä vallitsevasta tuulesta. Tutkimus ajoittuu 19.4.–29.9.2018 väliselle ajalle. Vertailuissa tarkastellaan erityisesti instrumenttien mittausten välisiä eroja (TROPOMI – Pandora) ja niiden keskiarvoa, erojen suhteellisia arvoja (suhteessa Pandoraan) ja niiden mediaania, sekä mittausten välistä Pearsonin korrelaatiokerrointa. Näiden tunnuslukujen riippuvuutta ajasta tarkastellaan eripituisia aikavälejä kattavien aikasarjojen avulla. Tulosten mukaan TROPOMIn ja Pandoran mittausten välinen Pearsonin korrelaatiokerroin on 0,66 ja niiden välisten suhteellisten erojen mediaani 12,1 %. Tätä voidaan pitää hyvänä tuloksena, sillä TROPOMIlle asetettu suhteellisten erojen tavoite on enintään 30 %. Positiivinen arvo on kuitenkin epätyypillinen kaupungissa tehtävälle validoinnille, mikä voi tarkoittaa Kumpulan alueen edustavan pitoisuuksiltaan enemmän tausta-aluetta kuin tyypillistä kaupunkiympäristöä. Mittausten välisen korrelaation havaittiin riippuvan rajakerroksen paksuudesta, mikä voi johtua TROPOMIn tulkinta-algoritmin käyttämästä NO2:n pystyprofiilista tai paksussa rajakerroksessa tapahtuvasta voimakkaammasta sekoittumisesta. Asian selvittäminen edellyttää kuitenkin lisätutkimuksia. Lopuksi TROPOMIn todettiin olevan herkkä viikon- ja päivänsisäisille pitoisuusvaihteluille Pandora-instrumenttiin verrattuna, mikä on lupaava tulos TROPOMIn mahdollisten ilmanlaadun seurantaan liittyvien sovellusten kannalta. TROPOMIn parantuneen resoluution vaikutus on tutkimuksessa nähtävissä aiempiin instrumentteihin verrattuna parantuneena korrelaationa ja positiivisempina mittauseroina, sekä herkkyytenä päivänsisäisille pitoisuusvaihteluille. TROPOMIn voidaankin odottaa tulevaisuudessa lisäävän satelliittipohjaisten NO2-mittausten käyttökohteita.
  • Viljamaa, Iiris (2019)
    Säätutkia käytetään sadealueiden liikkeiden ja sateen voimakkuuden arvioimisen. Säätutkan toimintaperiaate perustuu sille, että sen lähettämä mikroaaltopulssi siroaa ilmakehässä olevista partikkeleista kuten vesipisaroista ympäristöönsä, jolloin pieni osa lähetetystä pulssista heijastuu takaisin kohti tutkaa. Tutka vastaanottaa palanneen pulssin ja arvioi sen perusteella sadealueita. Säätutkat ovat mittalaitteita, jotka vaativat toimiakseen säännöllistä huoltoa ja mittaustulosten validointia. Säätutkan kalibrointi on monessa mielessä haasteellista. Tutka on kaukokartoituslaite, jonka keräämä data kattaa alueen aina 250 km säteelle tutkasta. Se ei mittaa suoraan sademäärää, kuten sademittarit yleensä, vaan arvio sen välillisesti tutkaheijastuvuuden kautta. Tämän tutkimuksen tarkoitus on tarkastella uutta mahdollista kalibrointimenetelmää. Uusi menetelmä käyttäisi pienoissadetutkaa MRR-2 vertailukohtana. Myös MRR-2 mittaa tutkaheijastuvuustekijää, joten se voisi olla hyvä vertailupari säätutkalle. Tasaisen sateen otoksessa vuosien 2015-2018 kesäsateissa säätutkan WRM200 ja pienoissadetutkan MRR-2 vertailupisteihin sovitetun suoran yhtälö on 𝑍(𝑊𝑅𝑀200) = 0.83 𝑍(𝑀𝑅𝑅−2) + 2.01, jossa 𝑍(𝑊𝑅𝑀200) on säätutkan ja 𝑍(𝑀𝑅𝑅−2) on pienoissadetutkan mittaama tutkaheijastuvuustekijä. Tasaisessa sateessa otoksen RMS-virhe on 3,36 dB. Konvektiivisen sateen otoksessa vastaava yhtälö on 𝑍(𝑊𝑅𝑀200) = 0.77 𝑍(𝑀𝑅𝑅−2) + 3.70 ja RMS-virhe 5,36 dB. Tasaisessa sateessa verrattavuus on konvektiivisessa sateessa tehtyä vertailua parempi. Tutkimus sisältää pohdintaa tuloksiin vaikuttavista tekijöistä sekä pohdintaa MRR-2:n soveltuvuudesta vertailulaitteeksi säätutkan kalibrointiin. Tutkimuksen pohjalta vaikuttaa siltä, että vaikka vertailunasettelu pyritään tehdä mahdollisimman vakaaksi, ei virhetekijöitä voida sulkea pois. Näin ollen tämän kaltaisella asettelulla ei voida suorittaa tarkkaa säätutkan kalibrointia.
  • Skyttä, Aurora (2021)
    Ilmakehän aerosolihiukkasilla on vaikutuksia maapallon säähän ja ilmastoon ja siksi niiden syntyä ja toimintaa pyritään tuntemaan yhä paremmin. Jos niiden rakenneosaset tunnetaan hyvin, voidaan myöskin aerosolihiukkasten ominaisuudet oppia tuntemaan paremmin. Mallinnusten ohella kokeelliset mittaukset ovat yksi keino saada lisää tietoa ilmakehän pienten rakenneosasten toiminnasta. Tässä työssä tutkin voidaanko differentiaalisella liikkuvuusanalysaattorilla (differential mobility analyzer, DMA) mitata α-pineenin hapetustuotteiden eri rakenteita. α-pineeni ja otsoni reagoivat virtausputkessa ja reaktioissa muodostuneet hapetustuotteet varattiin klusteroimalla ne elektrospraylla tuotettujen varattujen reagenssi-ionien kanssa. Näin syntyneiden varattujen klustereiden liikkuvuus ja massa-varaus-suhde mitattiin. Analysointiprosessissa käytin Matlab-pohjaista ToFTools-ohjelmaa ja INAR:in postdoc Lauri Ahosen tekemää Flat-DMA-analysointiohjelmaa. Tunnistin ToFToolsilla α-pineenin hapetustuotteista ja reagenssi-ionista koostuvien klustereiden kemiallisen koostumuksen niiden massan perusteella ja sovitin niiden liikkuvuusspektrin piikkien sisään Flat-DMA-analysointiohjelmalla piikkejä DMA:n maksimiresoluutiolla. Sovitettujen piikkien määrä kertoo siitä, kuinka monta rakennetta kullakin klusterilla mahdollisesti voisi olla. Mittauksissa havaittiin useita yhdisteitä, joita voitiin teorian perusteella olettaa syntyvän. Kuitenkin tunnistettiin myös sellaisia yhdisteitä, joita ei odotettu muodostuvan α-pineenin ja otsonin välisissä reaktioissa. On mahdollista, että yhdisteet on tunnistettu väärin tai mittauksiin on päässyt epäpuhtauksia. Näiden mittausten perusteella ei voida vielä varsinaisesti tehdä johtopäätöksiä siitä, miten monta isomeeria α-pineenin hapetustuotteilla on. Tulosten perusteella käytetty reagenssi-ioni vaikuttaa merkittävästi mitattujen rakenteiden määrään, joten jotta α-pineenin hapetustuotteiden rakenteita voitaisiin tutkia, täytyisi kunkin reagenssi-ionin vaikutus tuntea paremmin. Myöskin jotta rakenteiden määrää voitaisiin tutkia luotettavammin, täytyisi DMA:n resoluution olla huomattavasti nykyistä parempi. Nykyisellä resoluutiolla isomeerien määrän arviointi oli hankalaa eikä lopputuloksista voida olla varmoja.