Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "flavour"

Sort by: Order: Results:

  • Rekola, Kristiina (2015)
    Chemical composition of oats and its suitability for baking were reviewed in the literature part. The special features of baking without gluten and possibilities to increase the quality of gluten-free bread were also discussed. The aim of the experimental research was to develop high protein gluten-free oat-based bread. The effect of different protein concentration on structural, textural and sensory properties of gluten-free oat bread was studied. Also the effect of processing method on bread quality was studied by using sourdough technology and straight dough technology. Gluten-free oat bread recipe and baking protocol as well as sourdough fermentation conditions were optimized on the basis of preliminary trials. Oat-based breads with varying protein content were baked by using straight dough and sourdough technologies. Reference sample was oat-based bread without added protein. Specific volume, moisture content, texture profile analysis (crumb hardness, chewiness and resilience) and starch retrogradation of gluten-free breads were analysed. For shelf life measurements, breads were stored in plastic bags at room temperature from 1 to 3 days. Sensory profile of bread samples were evaluated on the day of baking by a trained panel. Descriptive analysis method was used. Palatable high protein gluten-free oat-based bread was obtained in this study. Increasing amount of protein improved the crumb structure and shelf life of gluten-free breads. All of the protein supplemented breads had agreeable sensory profile. Sourdough did not further improve the quality of high protein gluten-free bread except for increased aroma intensity. Oats and its fractions can be successfully applied as an ingredient for gluten-free baking to enhance the nutritional quality.
  • Nykänen, Venla (2022)
    Herbs are valued for culinary and health purposes and their metabolism and chemical composition can be influenced with LED lighting. This Master’s Thesis aimed to study how different spectra (green, blue, and white light) affect the sensory properties of hydroponically grown dill (Anethum graveolens L.) and coriander (Coriandrum sativum). The hypothesis was that green light produces more soapy and musty flavours in coriander, whereas blue light produces more citrus and typical coriander-like flavours. For dill the hypothesis was that blue and green light treatments produce stronger flavours compared to white light. A generic descriptive analysis method was chosen, and trained panels created sensory profiles for three light treatment and one commercial coriander and dill samples. Intensities of smell, taste and flavour attributes were evaluated using a line scale (0 = not at all to 10 = extremely) in three replicates. Study was conducted during the COVID-19 pandemic in the sensory laboratory conditions (ISO 8589). One-way ANOVA showed that light treatments had only slight impact on the sensory profiles of coriander and dill. In coriander blue light produced significantly lower lemon odour intensity compared to green light treatment. In dill total odour intensity was significantly lower in blue light sample compared to white light and commercial samples. Otherwise, one-way ANOVA did not show significant differences between samples. However, principal component analysis (PCA) implied that samples differed. Two-way ANOVA results showed that neither panel worked uniformly and deviation among intensity scores was observed. Herb samples proved to be rather difficult to evaluate and more extensive training could have improved panel’s performance. In future consumer study could be performed to study if spectrum affects the hedonic response to these herbs.
  • Naukkarinen, Noora (2013)
    The pet medication industry is growing but there are still challenges especially in feline medication. Palatable flavours, efficient taste masking technologies and easily administrable dosage forms are needed to facilitate feline medication. Based on the literature review, there is only little information about cat's preference to individual flavours. The methods for palatability testing should be improved to achieve reliable results. Most common taste masking technologies are flavouring and tablet coating. In experimental section different flavours for taste masking were studied. Five main flavours were selected: phenylalanine, leucine and methionine as possibly good flavours and arginine and denatonium benzoate as bad flavours. In preformulation experiments tableting characteristics, thermal behaviour and crystal structure of flavours were analysed. The aim was also to study their possible incompatibilities with tablet excipients. The main compatilibility study method was X-ray powder diffraction (XRPD), but differential scanning calorimetry (DSC) was also used. Excipient povidone (PVP) was incompatible with nearly all of the main flavours. The use of lactose as an excipient was excluded because of the risk of the Maillard reaction. In tableting studies a tablet mass containing microcrystalline cellulose (MCC), calcium hydrogen phosphate dihydrate, mannitol, hydroxypropyl cellulose (HPC), crospovidone, talc and sodium stearyl fumarate was produced. Minitablets of diameter 3 mm without any flavours were compressed. Also minitablets with flavours phenylalanine and denatonium benzoate were compressed. Minitablets complied with the European Pharmacopoeia tests for uniformity of mass, disintegration and friability. However, characterization and handling of minitablets was found to be challenging due to very small size of the tablets. Minitablets are a promising technology for facilitating feline medication in the future.