Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by study line "ei opintosuuntaa"

Sort by: Order: Results:

  • Kotilainen, Aino Kaarina (2023)
    Climate change poses an ever-increasing threat on biodiversity as the global mean temperature rises causing changes in weather patterns. Species will have to adapt to the circumstances or follow their climatic niches across space to avoid decline and extinction. Many species are already threatened by extinction due to climate change. Understanding how species are reacting to rising temperatures can help us preserve biodiversity. Genetic adaptation is a long process and takes several generations to occur. A more immediate means to cope with variation is adjusting through phenotypic plasticity, which can help species cope with environmental changes in the short-term. Plasticity can help individuals maintain fitness in different environments and with fluctuating environmental conditions. Flowering phenology is a plastic trait which can have a large impact on reproductive success. Flowering is an important part of a plant’s life cycle as it can produce offspring with new combinations of genes. In this thesis I examine how temperature affects the flowering phenology of Hypericum species and how this thermal plasticity affects fitness. Populations of Hypericum perforatum, H. maculatum and H. montanum from different parts of their distribution across Europe were studied in greenhouse experiments. The plants were grown in four different temperature treatments (16/6°C, 20/10°C, 24/14°C, 28/20°C) and the timing of first flowering was monitored. Seed mass and flower count were recorded and used as measures of fitness. In general, the plants flowered later in the colder temperature treatments. The results differed between species: in H. maculatum the leading-edge populations were less plastic while in H. perforatum differences between areas were negligible. More plastic accessions produced more flowers due to earlier flowering. There was no effect on seed mass. The possible effects of plasticity on overall fitness highlight the need for detailed information on plasticity for predicting species response to climate change.
  • Nygård, Elisa (2020)
    Global surface temperature is increasing at an alarming rate. Local populations can cope with the change, if they have adaptive potential to face the new thermal regime. Hybridization with a closely related lineage is one potential source of adaptive genetic variability. My thesis aimed to investigate thermal adaptation by looking into thermal tolerance differences between two mound-building wood ants Formica polyctena and Formica aquilonia and their hybrids. The two parental species have distinct distributions: F. aquilonia can be found in Northern Europe while F. polyctena is distributed from Central Europe to Fennoscandia. The samples for this thesis were collected from a relatively small area in southern Finland and Åland Islands. Aim of my thesis was to clarify whether the two parental species have distinct thermal tolerances, which would reflect the differences in their distributions. I also tested whether hybrid individuals have wider thermal limits since they have alleles from both northern and southern parental species and could therefore show adaptive potential. I tested thermal tolerance differences with two temperature assays: heat-knockdown resistance and chill-coma recovery. I hypothesized that F. aquilonia would express more cold-tolerant thermal limits whereas F. polyctena would express more heat-tolerant limits. My results showed that the parental species differed in their thermal tolerance and expressed thermal limits which reflected their distribution. These results support the thermal adaptation hypothesis: parental species expressed thermal limits that reflected the thermal environment in their native habitat. The results also showed that hybrids could not combine the thermal tolerance of both parental species as they did not have wider thermal tolerance than parental species. Intriguingly, dry weight had a significant role in thermal tolerance, bigger ants coping better with higher temperatures. These results contribute to building up knowledge on the outcomes of hybridization and the potential that species possess in coping with the environmental change. Wood ants are keystone species in boreal forests and the findings of my thesis shed a light on the changes in population dynamics for these species in the face of global climate change.
  • Burg, Skylar (2021)
    In this study, a greenhouse experiment was used to assess if temperature sensitivity, specifically, thermoregulatory plasticity, has a functional role in floral reflectance and pigmentation in a population of P. lanceolata grown in three different temperature treatments, reflecting past, present, and future summer temperatures. Spectrophotometry, surface temperature readings, and near-infrared (NIR) region image analysis were used to identify how the spectral absorbance properties and biochemical makeup of P. lanceolata flowers differed between treatments. Reflectance and phenolic absorbance were both found to be influenced by ambient temperature. However, surface temperature of flower spikes was not affected by growing temperature, reflectance, or phenolic absorbance. The results suggest that Plantago lanceolata may utilize thermoregulatory plasticity in reflectance and phenolic absorbance to adjust to rising temperatures. These findings have important implications in species reactions to climate change and denotes that increased selection on thermal function traits may occur under a future climate scenario of continued warming in temperate and boreal biomes.
  • Ordax Sommer, Nicolás (2021)
    Trace element analysis is a useful tool for the study of migration and migratory connectivity in birds. Trace elements are present in the environment and, through the food chain, can be incorporated into tissues such as growing feathers. Since the concentrations of elements remain stable after the feather has stopped growing, and trace element abundances can vary at very small geographical scales, the concentration of trace elements in feathers can provide information on the location where a feather was moulted. Trace element analysis is still rarely used and there are important gaps in our understanding of how trace elements can vary at different organizational levels such as within a feather, between individuals or even between species. It is also not clear if large-scale geographical patterns can be detected by the method, as trace element concentrations can vary a lot even at small scales, which could make it impossible to see larger-scale patterns. To address that, my objectives were (1) analysing the variability of trace element concentrations within feathers, between individuals and between species and (2) determining whether trace element levels differed in feathers grown in Africa compared to feathers grown in Europe. This would shed insight on the suitability of trace element analysis for the study of migration and migratory connectivity. I analysed the concentration of 18 trace elements in the rachis of feathers from willow warblers (Phylloscopus trochilus) and barn swallows (Hirundo rustica) collected in Finland. I plucked three belly feathers from willow warblers collected in spring, whose feathers had grown in Africa. These feathers were used to analyse variability of trace element concentrations within feathers and between individuals. They were also compared to feathers plucked from barn swallows collected in spring (two feathers per bird) to analyse variability between the feathers of two species that winter in the same region. Finally, African-grown feathers of willow warblers were compared to European-grown feathers of willow warblers collected in autumn (two feathers per bird) to look for differences in trace element concentrations in feathers grown on two different continents. Trace element concentrations were analysed using Laser-Ablation Inductively-Coupled-Plasma Mass-Spectrometry (LA-ICP-MS), which allowed to measure concentration at hundreds to thousands of points along the feather rachis. The concentration of each of the 18 elements was used as the response variable in linear mixed models (LMM). To model variation in concentration within the feather I used location along the feather rachis as the explanatory variable and explored how well it predicted concentration of each element. To compare variation between feathers and individuals I fit models including and excluding the feather and individual that each measurement belonged to as random effects and compared them using AIC. To compare between willow warbler and barn swallow feathers grown in Africa I included species identity as the explanatory variable and looked at how the concentration of the 18 elements differed between them. Finally, I followed the same approach to compare willow warbler feathers moulted in Africa and in Europe. For most elements there was little variation along the feather rachis, with concentration remaining stable from feather base to tip. Zn and S showed an increase in concentration starting at the feather base until the central part of the feather and then remained constant toward the tip. Feathers belonging to the same individual showed mostly similar trace element concentrations, although there were exceptions and differences between feathers of different willow warbler individuals were also little. 10 out of 18 elements showed significant differences in feathers of willow warblers and barn swallows grown in Africa. Eight of those elements were more abundant in willow warbler feathers, while only two were more abundant in barn swallow feathers.12 out of 18 elements showed significant differences between their level in African-grown feathers and European-grown feathers. Of those, 10 elements showed higher levels in African-grown feathers, while only two were higher in European-grown feathers. My results suggest that trace elements can show variation at different organizational levels. Variability within feathers was important in at least two elements, which could be caused by physiological processes. This means that when designing sample collection for trace element analysis, unless we know that an element does not vary along a feather, it is important to consider which part of feathers we are sampling. Variability between feathers and individuals was lower than within feather variability, but still significant. Future studies should account for possible within and between individual differences in their design. Differences between barn swallows and willow warblers were large, which was expected based on the literature. It is still unknown what drives these differences between species: some explanations suggested have been physiological and dietary differences or differences in their habitats. I also found clear differences between feathers of willow warblers grown in Europe and Africa. While the exact cause is still not known, this means that at least in willow warbler feathers it is possible to study large scale geographical patterns by trace element analysis. LA-ICP-MS has potential to be a powerful tool to study migration and migratory connectivity in birds. It allows to detect variation in trace elements at continental scales while also allowing to control for different levels of variability in the study design. I encourage researchers to adopt its use in their research.
  • Mulà, Clelia (2021)
    Prey defend themselves from predators using a range of tactics, including evolving distasteful compounds and advertising their unprofitability with aposematic warning signals. Therefore, before attacking a potential prey, predators need to assess whether it is palatable and profitable to consume. Previous studies have demonstrated that predators can rely on personal experience (personal information) and/or observe the foraging behaviour of others (social information) to assess prey profitability. ‘Social avoidance learning’, where predators observe a negative foraging experience associated with beak wiping, has been suggested to be important to explain how novel warning signals evolve. However, in previous studies observers saw a very strong “disgust response” of the demonstrators, when in fact there is variation in how strongly birds respond to unpalatable food. Therefore, to understand how social avoidance learning can work in nature I investigated how blue tits (Cyanistes caeruleus) use social information from demonstrators that show a weaker response to unpalatable food. I provided social information to observers using video playback of a demonstrator bird consuming a novel conspicuous prey item and showing: (1) a strong disgust response (65-95 beak wipes) as in previous studies, (2) a weak disgust response (12-25 beak wipes), or (3) no disgust response (control, no beak wiping). Next, I investigated birds’ foraging choices using a miniature novel world protocol where birds encountered novel aposematic (conspicuous and unpalatable) and cryptic (camouflaged and palatable) prey. Tested individuals consumed fewer aposematic prey after seeing a strong response but seeing a weak response did not influence their foraging choices. My results, therefore, suggest that information about novel aposematic prey may be less likely to spread socially than previously thought. However, more work is needed to determine both the availability and salience of graded social information.
  • Serra Dominguez, Lluis (2021)
    Beta diversity (total dissimilarity) can be partitioned into two components: dissimilarity attributed to turnover and nestedness-resultant dissimilarity. Turnover refers to the variation in species identities among sites and implies the replacement of some species by others. In contrast, nestedness occurs when species-poor sites have a subset of the biota present in species-richer sites. Although disentangling the relative contribution of these two antithetic components from beta diversity can characterize species assemblages, the dissimilarity indices do not provide information on the processes generating the patterns. Conversely, Hierarchical Modelling of Species Communities (HMSC), which unifies many of the recent advantages of Joint Species Distribution Models, has proved to be the one of the best performing frameworks for unravelling the underlying mechanisms structuring ecological communities. The aim of this research is to explore the relationship between the outputs of the HMSC model and the dissimilarity indices in different communities with a wide range of parameterizations. As the observed patterns measured by the beta-diversity indices result from the underlying processes which HMSC attempts to capture, I hypothesized that both frameworks are at least partially linked to each other. To achieve this aim, I simulated the community data by following the structure of the HMSC model. For simplicity, only one environmental covariate was considered, which was scaled to 0 mean. The intercept of the HMSC model accounted for the baseline occurrence probability of the species, while the slope modeled the species responses to the environmental covariate. The HMSC-intercept and the HMSC-slope, which represent the species multivariate niches, were summarized in terms of center and spread. Simultaneously, the beta diversity indices (total, turnover and nestedness dissimilarity) were calculated from the community data. Finally, the outputs of both frameworks were related in terms of linear modelling and variation partitioning. As hypothesized, the results of this study suggest that outputs of the HMSC model are able to explain most of the variation in the beta-diversity indices, indicating that both frameworks are strongly related. By plotting the species niches (intercept and slope coefficients of the HMSC model) it is possible to determine the main axes of niche variation producing the nestedness and turnover patterns. While nestedness is generated by a shared response of the species to the environmental covariate(s), turnover is produced by variation in the species responses. Finally, the total dissimilarity index is driven by species rarity. In conclusion, the most comprehensive evaluation of the structure of ecological communities and the processes determining the diversity patterns can be achieved by combining the outputs of beta-diversity indices and the HMSC model.
  • Tolvanen, Kristiina (2020)
    Ecophysiology and ecology in plants are strongly affected by the conditions surrounding them. Adaptation aids plants to survive and to succeed in the prevailing conditions. Winter is a challenge to plants, particularly in northern latitudes and higher altitudes, because it exposes plants to cold and drought, for example. Plants survive from winter on species level with the help of genetic adaptations and as individuals also with the help of acclimation. Woodland strawberry (Fragaria vesca) has been observed to grow separate winter leaves. This allows it to continue photosynthesis in mild conditions during winter, thus improving its energy balance, and to start growing earlier than other species in the spring, which is beneficial in interspecific competition. Fragaria vesca is a species that has wide distribution in the northern hemisphere, and its genotypes are found from very different locations and conditions. However, adaptive traits such as producing a new set of leaves for winter can turn out to be a disadvantage if environmental conditions change rapidly. Climate change brings about changes that are difficult to predict, and these changes are advancing at a fast pace when compared to the developmental history of plants. The aim of this thesis was to study the effect of temperature on summer and winter leaf development, stolon formation and summer and winter leaf chlorophyll, flavonol and anthocyanin content in different Fragaria vesca genotypes. Leaf chlorophyll and secondary compound content give information about leaf development and stress reactions in plants. Plants are known to produce anthocyanins in order to protect the photosynthetic apparatus during chlorophyll recovery in leaf senescence. Anthocyanins are also produced as a response to low temperatures. Research increases knowledge of the ecophysiological and winter ecology-related processes in Fragaria vesca and in the commercially valuable Rosacea-family as well as provides information about the possible responses of these organisms to climate change. Material for the study consisted of twelve European Fragaria vesca genotypes, which had originally been collected from five countries: Norway, Finland, Germany, Italy and Spain. The genotypes had been collected from different latitudes, and they also expressed altitudinal differences. In this study, these genotypes were kept in two temperature treatments, warm (+16°C) and cold (+11°C/six weeks, after which +6°C/four weeks) at a greenhouse. Leaf development was studied by measuring summer and winter leaf middle leaflet width and length, and petiole length. Stolons from each plant individual were counted on a weekly basis and observations about stolon production in relation to the timing of summer leaf senescence and winter leaf development were made at the same time. Leaf chlorophyll and secondary compound content was measured with a Dualex-meter, which provided values for chlorophyll, flavonol and anthocyanin content. The underlying assumption was that cold temperature would induce winter leaf development and summer leaf senescence. The results show that there were differences in summer leaf size between genotypes. Winter leaves had differences between genotypes, but also within genotypes at different temperature treatments. Stolon count was lower and stolon production ceased slightly earlier in the cold treatment. Moreover, summer leaf chlorophyll content decreased in both treatments, but the summer leaves senesced earlier in the warm room. Summer leaf flavonol and anthocyanin values were generally higher in the cooler temperature treatment. Anthocyanins were also produced by winter leaves in the cooler temperature treatment. Based on the results, Fragaria vesca genotypes had differences related to their origin, but temperature also had an effect on winter leaf development, stolon production and the production of secondary compounds. The effect of cold temperature on the size of developing winter leaves was clear. In the cooler temperature treatment, the winter leaves were smaller than in the warmer treatment. The anthocyanin content of summer leaves was higher than in the winter leaves, and the summer leaf anthocyanin content was higher in the colder temperature treatment, where the stress related to the photosynthetic apparatus and low temperatures was combined. Nevertheless, lower temperature did not explain all the responses observed in the genotypes of the study, and thus it is likely that acclimation and winter leaf development in Fragaria vesca are affected by some other factor in addition to temperature, e.g. light regime. A possible continuation for this work would be to study the effect of light conditions or milder winters on winter leaf development in Fragaria vesca genotypes and on the physiology of the species.