Browsing by Author "Er, Safak"
Now showing items 1-1 of 1
-
Er, Safak (2018)As a genome editing tool, CRISPR-Cas9 has provided a robust way to generate mutations in the gene of interest, at a certain time point, and in selected cell populations. The impairment of dopaminergic neurons in the substantia nigra is addressed to be one of the main pathologies of Parkinson’s disease. The histopathology of Lewy Bodies, with an undetermined role, accompanies the demise of DA neurons. Development of strategies for the prevention the neurodegeneration has a potential to slow down the progression of Parkinson’s disease. In this study, a novel, neuron-specific CRISPR-Cas9 system was developed for the purpose of dissecting neuroprotective pathways in primary dopaminergic neurons. The optimization of the tool was done by targeting EGFP at TH-positive neurons obtained from transgenic animals expressing EGFP in dopaminergic neurons. Complete loss of EGFP was achieved at day 6 after the introduction of the CRISPR-Cas9 via lentiviral vectors. There were no survival or transduction efficiency differences. Two significant pathways for the survival of dopaminergic neurons, the microRNA biogenesis and GDNF/RET signaling were selected to collect the preliminary data. Dicer, Trbp, Translin, Ago-2 and Ret were targeted with single sgRNAs, which were specifically designed to create indel mutations in these genes, and specific lentivirus vectors were produced with each guide. After transduction with the lentivirus vectors, survival of the TH-positive neurons was unaffected. Data obtained from the quantitative PCR suggested that there was 50-70% decline in transcript levels of Trbp. However, the unchanged transcript levels of the other miRNA-related targets suggest the need for further optimization of the specific guides. Knockdown of Ret was validated by inhibition of pharmacological benefits of GDNF. Overall, this research has shown the further development of this CRISPR-Cas9 tool would be useful to dissect neuroprotective signaling pathways in dopaminergic neurons.
Now showing items 1-1 of 1