Browsing by Author "Haapala, Anu Johanna"
Now showing items 1-1 of 1
-
MANF-Knockout Human Embryonic Stem Cells React to Oxidative Stress Differently than Wild-Type Cells Haapala, Anu Johanna (2023)Introduction: Oxidative stress occurs in cells when reactive oxygen species are generated as a by-product of oxygen metabolism and start to accumulate excessively. While extensive oxidative stress is highly detrimental to the cells, trophic factors help them survive. Trophic factor MANF has interested especially Parkinson’s disease researchers, but recent findings suggest that MANF plays a role in many diseases, also ones with an early childhood-onset. For this reason, it is important to investigate MANF function in different cell types. We have studied how MANF-knockout human embryonic stem cells react to oxidative stress compared to wild-type human embryonic stem cells, by exposing the cells to hydrogen peroxide and ethanol. Results: MANF-knockout human embryonic stem cells were more sensitive to oxidative stress than wild-type cells, but the variation between measurements was remarkable and the differences were statistically insignificant. We found that a transcription factor of our interest localized in the cell nuclei of MANF-knockout cells upon oxidative stress exposure. Such a nuclear translocation did not occur in wild-type cells. Moreover, we found that high concentrations (>2%) of ethanol reduced the viability of cells in only four hours. Discussion: Our findings suggest that MANF-knockout human embryonic stem cells react to oxidative stress differently than wild-type cells. Additional studies are necessary to clarify whether MANF-knockout human embryonic stem cells are indeed more sensitive to oxidative stress than wild-type cells. In the future, it would be interesting to inspect whether MANF protects human embryonic stem cells when the cells are exposed to physiologically relevant ethanol concentrations for longer periods of time.
Now showing items 1-1 of 1