Browsing by Author "Lamichane, Nicole"
Now showing items 1-1 of 1
-
Characterisation of the Hairy and Enhancer of split protein family in sugar metabolism of Drosophila Lamichane, Nicole (2019)Over the past years sugar consumption has seen great increases worldwide, together with a rise in the prevalence of metabolic diseases. There is a growing need for a comprehensive characterisation of the genes involved in sugar metabolism, yet the mechanisms by which cells sense and respond to sugars in vivo have remained incompletely understood. Here, I analyse members of a protein family best known for their regulation of differentiation during development with regards to their role in sugar metabolism. The Hairy and Enhancer of Split (HES) protein family are a group of basic helix-loop-helix (bHLH) transcription factors that function as major downstream effectors of the Notch signalling pathway. In mammals, the HES proteins have mostly been studied for their role in cell differentiation, but HES1 has been implicated in metabolic control. Drosophila has several transcription factors belonging to the HES family, including Hairy and seven bHLH transcription factors located in the Enhancer of split complex (E(spl)-C). The E(spl)-C bHLH transcription factors display high homology and are considered to be genetically redundant, and therefore little is known about their individual functions. The other HES family members in Drosophila have not previously been linked to metabolic regulation, but Hairy has been shown to repress the tricarboxylic acid cycle. In light of the findings implicating HES1 and Hairy in the regulation of metabolism, I systematically investigated the role of the HES transcription factors in sugar metabolism. By using the GAL4/UAS system in Drosophila melanogaster, I knocked down gene expression of each of the family members, and raised the flies on diets varying in sugar content to identify possible sugar intolerance phenotypes. Here, I show that knockdown of one of the E(spl)-C bHLH genes led to severe sugar intolerance that affected both survival and organismal growth, but did not alter the levels of circulating carbohydrates and storage lipids as measured with colorimetric assays and lipid staining. Furthermore, I identify the tissues in which this transcription factor functions to provide sugar tolerance. Using analysis of publically available chromatin-immunoprecipitation sequencing data coupled with quantitative RT-PCR, I uncover mTOR target Thor/4E-BP as a putative target gene. Additionally, I show that Hairy is similarly required for complete sugar tolerance, but that the mechanism differs from the E(spl)-C bHLH transcription factor. Hairy binds to and positively regulates expression of genes involved in glycolysis and the pentose phosphate pathway, suggestive of a cooperation with earlier known regulators of sugar sensing. In conclusion, I have shown that only two HES family members are involved in the regulation of sugar metabolism and that their regulatory mechanisms are distinct, implying that the HES family members have more diverse roles than previously assumed.
Now showing items 1-1 of 1