Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by discipline "Biotechnology"

Sort by: Order: Results:

  • Elf, Sonja (2019)
    Despite recent advances in understanding, diagnosis and treatment of cancer, this complex and versatile disease remains one of the leading causes of death worldwide. New and rapid diagnostic methods are needed to detect cancers at their early stages of development, thus enabling earlier prognosis, better risk assessment and more efficient treatment of the disease. There has been an increasing interest in specific molecular biomarkers as the hallmark for cancer research, and the detection of these markers from liquid biopsies using advanced molecular diagnostics methods provides major advantages over the conventional imaging methods currently used in oncology. The aims of this thesis were to examine the applicability of a novel molecular method, SIBA® (Strand Invasion Based Amplification), for the detection of cancer biomarkers, and to develop an assay targeting androgen receptor splice variant 7 (AR-V7) mRNA. The AR-V7 is proposed as a treatment-response biomarker in patients with castration-resistant metastatic prostate cancer (mCRPC). The expression of this variant can indicate resistance to hormonal therapies used for the treatment of advanced prostate cancer. Prostate cancer is the most common cancer after lung cancer in men worldwide and can gradually develop into a highly advanced lethal form, mCRPC, that is not responsive to androgen deprivation therapies. Positive AR-V7 status is suggested to represent the phenotype of this advanced stage of prostate cancer, and its detection can assist in treatment selection for the mCRPC patients. SIBA is a novel isothermal method for the amplification and detection of nucleic acids. The technology offers significant advantages over the more conventional molecular detection method, polymerase chain reaction (PCR), since the amplification reaction occurs at constant temperature and does not require sophisticated laboratory equipment for the thermal cycling. Reverse transcription SIBA (RT-SIBA) enables reverse transcription of RNA to cDNA as well as the simultaneous amplification and detection of the cDNA in one-step reaction under isothermal conditions. The method displays both high analytical sensitivity and specificity to the target nucleic acids. The RT-SIBA technology has not formerly been applied for the detection of human DNA or RNA. The main finding of this thesis was, that the RT-SIBA technology can be applied for rapid detection of specific molecular cancer biomarkers such as the AR-V7 mRNA. In this study, two RT-SIBA assays targeting the full-length androgen receptor (AR-FL) mRNA and the AR splice variant 7 mRNA were developed and optimized. Performance of the assays were evaluated by testing RNA isolates from AR-V7 positive and negative prostate cancer cell lines in the presence of human whole blood and plasma in the reaction. The developed RT-SIBA assays provided high analytical sensitivity and specificity: low copies of the target mRNA were amplified within 20 minutes without the production of non-intended amplicons. The results suggest that the RT-SIBA technology can be utilized for easy and rapid detection of AR-V7 and AR-FL mRNA directly from liquid sample material without a need for time-consuming sample treatment. Further performance evaluation using real AR-V7 positive clinical samples from mCRPC patients is necessary for the reliable validation of the developed assays.
  • Jha, Sawan (2014)
    Lymphangiogenesis is the process that leads to the formation of lymphatic vessels from pre-existing vessels. Vascular endothelial growth factor C (VEGF-C), the ma- jor lymphangiogenic growth factor, is produced as an inactive precursor and needs to be proteolytically processed into a mature form in order to activate its receptors VEGFR-3 and VEGFR-2. A deficiency of VEGF-C during embryonic lymphangiogenesis results in embryonic lethality due to the lack of lymphatic vasculature. Hennekam lymphangiectasia-lymphedema syndrome (OMIM 235510) is in a subset of patients associated with mutations in the collagen- and calcium-binding EGF domains 1 (CCBE1 ) gene. CCBE1 and VEGF-C act at the same stage during embryonic lymphangiogenesis and their deficiency results in similar lymphatic defects. The mechanism behind the lymphatic phenotype caused by CCBE1 mutations is un- known. The aim of this study was to investigate the potential link between VEGF-C and CCBE1 that could contribute to the lymphatic phenotype. In this study, 293T cells were used to observe the effect of CCBE1 on VEGF-C pro- cessing. The co-transfection of constructs coding for CCBE1 and VEGF-C showed processing of the inactive pro-VEGF-C into the active, mature form. However, this processing was efficient only in 293T cells. When CCBE1 from 293T supernatant was purified, A disintegrin and metalloproteinase with thrombospondin type 1 motif 3 (ADAMTS3) co-purified with CCBE1. The levels of pro-VEGF-C and active VEGF-C were monitored by immunoblotting or immunoprecipitating metabolically labeled supernatant with specific antibodies or receptors followed by autoradiography. The activity of the processed VEGF-C was verified by proliferation of Ba/F3 cells stably expressing VEGFR-3/EpoR or VEGFR-2/EpoR chimeras. Furthermore, a VEGFR-3 phosphorylation assay was performed in PAE (Porcine Aortic Endotheial) cells to study details of the CCBE1-mediated regulation of VEGF-C. We found that CCBE1 increases the proteolytic processing of pro-VEGF-C, thereby resulting in increased activity of VEGF-C. CCBE1 itself has no effect on VEGF-C activity but regulates VEGF-C by modulating the activity of the ADAMTS3 protease. We also found that both pro- and mature- VEGF-C can bind to VEGFR-3 but only mature form is able to induce VEGFR-3-mediated signaling. In addition to cleaving VEGF-C, ADAMTS3 was found to directly or indirectly mediate CCBE1 cleavage. The N-terminal amino acid sequence of the ADAMTS3-processed VEGF-C confirmed that ADAMTS3 is the protease responsible for the activation of VEGF-C by 293 cells. Hence, we have identified a mechanism that regulates VEGF-C activity. This mechanism suggests the possible use of CCBE1 as a therapeutic means to treat diseases that involve the lymphatic system.
  • Zaki, Urfa (2019)
    Cerebral dopamine neurotrophic factor (CDNF) belongs to the the family of neurotrophic factors that are evolutionary conserved, having a unique structure, with two domains: C-terminal domain and the N-terminal domain, and a cysteine bridge. It is known to be involved in the repair of the dopaminergic neurons when studied in the animal models of PD, which shows their different mode of action as compared to other neurotrophic factors, highlighting their therapeutic potential. Analysis of the crystal structure shows that CDNF and MANF consist of two domains: the saposin-like N-terminal domain with five α-helices stabilized by three disulphide bridges, and presumably unstructured C-terminal domain with a disulphide bridge. Characteristic feature of saposin-like proteins is their ability to interact with membranes or lipids. The lipid interaction may be crucial for the activity of CDNF and MANF proteins. In the first part of this project, the binding of CDNF was tested with several oxidized lipids, using two methods; Co-sedementation assay and lipid fluorescence assay;with two different types of probes. According to the results, CDNF seemed to show binding with POVPC. The second part of the project involved testing the binding and internalization of CDNF to mouse myoblast cells in the presence of oxidized lipid; POVPC. It was observed that CDNF seemed to show binding to the cell surface of the mouse myoblast cells (C2C12) and is also observed to be internalized to the cells as well. However, as these are the preliminary results, so we need to further test the binding between the protein and other lipids and devise more precise protocols for the testing the internalization to the cells.
  • Banerjee, Rishi (2019)
    After birth, stem cells act as the source of reparative and regenerative potential in various tissues. Among different tissues and organs in human body, tooth is one of the organs which does not undergo continuous regeneration. Therefore, tooth regeneration must be studied in a different animal, which possesses continuously growing teeth. In mouse, the incisor undergoes continuous growth which is fueled by the interaction between epithelial and mesenchymal stem cell compartments located at its apical end. The inferior alveolar nerve, which supports mandibular dentition, and its surrounding blood vessels (combinedly known as neurovascular bundle or NVB) were previously shown to act as a source of the mesenchymal stem cells during incisor growth and regeneration. However, the regulation of the cells in the NVB is not well understood. The primary aim of my master’s thesis was to characterize the effect of the Hh pathway modification on cellular properties of the NVB and the MSCs within it. The Ptch2 KO mouse model used in this study demonstrated increase in the number of blood vessel in the NVB. Additionally, analysis of the structure of skin in the mouse model was the second aim of my project, which showed significant increase in the thickness of the dermis at the postnatal day 1. Collectively, the change in structure of skin and NVB showed that Ptch2 might regulates the cellular properties of tooth mesenchyme and dermis by modulating the structural components of the NVB of continuously growing mice incisor and skin, respectively.
  • Sultana, Nasrin (2020)
    Tiivistelmä – Referat – Abstract Plant lives and grows in variable environment and climate conditions. Everyday plants can be confronted with a variety of abiotic (temperature, light, salt, water availability) and biotic stress (pathogens, insects etc). These abiotic and biotic stress can halt plant growth and influence crop productivity. Plant has evolved signaling mechanism and different responses to adapt or respond with these unfavorable environmental conditions. Our group’s previous research identified a new mutant in the model plant Arabidopsis thaliana with a striking phenotype – when the plants ages it progressively becomes yellow and eventually the entire plant is white. The mutant was named “white” after its striking appearance. The phenotype is associated with increased accumulation of mRNA transcript for stress and senescence regulated genes. Mapping of the mutation identified a 4 bp deletion in a gene EGY1 that encodes a metalloprotease located in the chloroplast. To identify molecular mechanisms that regulate this unusual type of premature senescence, a suppressor mutants screen was performed in the white mutant, and three suppressors that restore normal appearance to the plant was identified. Mapping of one of these suppressors, identified a mutation in STAY GREEN1 (SGR1) as a likely candidate. SGR1 encodes the protein that catalyze the first step in chlorophyll breakdown, removal of Mg2+ from chlorophyll. The overall aim of my master thesis was to understand the molecular mechanisms behind the development of the age and chlorophyll related phenotypes in the white mutant and its two suppressors S1 and S2. Furthermore, with gene expression analysis, plant stress and senescence responses were studied in white, S1 and S2. By complementation method I proved that mutations in SGR1 gene caused the development of suppressor mutant phenotype and restoration of wild type allele of SGR1 gene restore white phenotype in suppressor mutant. Measurements of chlorophyll concentration provided further evidence that the mutation in SGR1 stabilizes the suppressor mutant phenotype, stops chlorophyll breakdown and keep the leaves green. Gene expression study using qPCR with marker genes provided insight of molecular changes within these phenotypes.
  • Oikkonen, Jaana (2012)
    Genome wide linkage and association methods are used to map genes affecting traits with genetic predisposition. In this thesis, I compare the methods suitable for quantitative trait mapping in complex, extended pedigrees. As a case study, gene-mapping study of musical aptitude is performed with these methods. Linkage analysis methods are developed for family studies. However, only a few methods are suitable for extended families with a quantitative trait. Three linkage programs were successfully applied for such data in this study. These programs are the SOLAR, JPSGCS and KELVIN. All of these three programs are based on different methods and thus, the same calculations are not repeated. SOLAR is based on the variance components method, JPSGCS on a graphical method and KELVIN on the Bayesian method. Association analysis is also difficult to implement for large pedigrees, because it is best suited for case-control data. Fortunately, methods are extended also for family-based studies. Here, a genomic control method was used to correct for the familial relationships. The method evaluates the relatedness from the whole genome data and the association tests are corrected for the relatedness rates. This method was implemented from the GenAbel program. As a case study, these methods were applied to a musical aptitude study. The musical aptitude is here understood as an ability to perceive the melody, harmony and rhythm of music, and to recognize structures in set of sounds. These abilities were tested with Carl Seashore s tests for pitch and time and Kai Karma's test for auditory structuring. The data consists of 107 pedigrees and 93 sporadic subjects, comprising in total of 915 individuals. Each family includes 2 - 50 individuals. These individuals were genotyped with a SNP chip for over 700,00 SNPs. The linkage analyses revealed several promising loci for the musical aptitude. The best result was located in 4q12 and it was found with all of the three linkage programs. Most of the other results could also be identified with multiple programs, but some differences also occurred. However, none of the findings could be discovered with association analysis, probably due to a too small sample size.
  • Deb, Debashish (2019)
    There is significant reduction in number of approved drugs for acute myeloid leukemia in recent years. Partially it may be due to the failure of discovery and validation approach to new drugs as well as the complexity of the disease. Ex vivo functional drug testing is a promising approach to identify novel treatment strategies for acute myeloid leukemia (AML). In ideal condition, an effective drug should eradicate the immature AML blasts, but spare non-malignant hematopoietic cells. However, current strategies like conventional cell viability assay fail to measure cell population-specific drug responses. Hence, development of more advanced approaches is needed. Using multiparameter, high-content flow cytometry (FC), we simultaneously evaluated the ex vivo sensitivity of different cell populations in multiple (10) primary AML samples to 7 FDA/EMA-approved drugs and 8 drug combinations. Amongst the 7 tested drugs, venetoclax, cytarabine and dasatinib were very cytotoxic with venetoclax had the highest blast-specific toxicity, and combining cytarabine with JAK inhibitor ruxolitinib effectively targeted all leukemic blasts but spared non-malignant hematopoietic cells. Taken together, we show that the ex vivo efficacy of targeted agents for specific AML cell population can be assessed with a cell phenotype, FC-based approach. Furthermore, we put an effort to analyze the potential of this assay and biomarkers to predict the clinical outcome of individual patients and future perspectives.
  • Korppoo, Annakarin (2017)
    Trichoderma reesei, an anamorph of Hypocrea jecorina, is a filamentous fungus widely used for producing industrial enzymes. T. reesei is used for both endogenous and heterogenous protein production. The optimization of the production conditions and the effects of extracellular agents to T. reesei s production and secretion capacity are crucial for economically sustainable biotechnical production. The available carbon sources, most commonly different types of sugars, have a significant effect on the production and secretion of enzymes by T. reesei. Genetic modification of the pathways through which the fungi recognizes extracellular signals could bring advancements to industrial enzyme production. Because of T. reesei s potential and use as a production strain, the species is an interesting platform for genetic modifications that would enhance the production capacities. With the current methods the genome editing of T. reesei is however slow, and introducing multiple mutations to a single strain can take years. The aim of this study is to optimize the fairly new CRISPR/Cas9 genome editing system for use in T. reesei. In the CRISPR/Cas9 method, a catalytically active Cas9 enzyme is bound to a specific locus of the genome, guided by a guide RNA and the Watson-Crick base pairing principle. Once in the RNA-guided locus, Cas9 introduces a double stranded break in the DNA, which can be repaired by the cells endogenous non-homologous end joining pathways. This repair is error prone and produces mutations to site of the double stranded break. A donor DNA is often introduced together with the Cas9 and guide RNA. This donor DNA includes sequence homology to the site of interest and allows for the use of the cells homologous repair pathways. In this case, the mutation can be better controlled, and for example the risk of chromosomal mutations is reduced. Currently the CRISPR/Cas9 system is widely used in mammalian cell studies and up to 100% mutation frequencies have been reported in yeast cells. In this study the method is optimized for use in T. reesei. To our best knowledge, the research community has not found an organism in which CRISPR/Cas9 would not function. The question mainly lies on what type of set up and component introduction is suitable for each cell type and research purpose. In this thesis, three putative and one already published genes believed to be involved in hexose sugar sensing will be deleted from a T. reesei production strain with the help of CRISPR/Cas9. The effect of these deletions will be assessed through studying the secretion and activity of endogenous cellulases with enzymatic assays. One sugar transporter that may play a part in glucose sensing was identified in this study. The deletion of this transporter caused a decrease in cellulase production and/or secretion. The three other transporters or sensors did not have a significant effect on cellulase production in spent grain extract and lactose or glucose media. It s possible that these genes are involved in the uptake and use of other carbon sources. The continuous expression of the CRISPR/Cas9 system in T. reesei proved difficult. In the continuous expression method at least one of the CRISPR/Cas9 components, the Cas9 protein or the guide RNA, is produced in the cells in vivo. Neither was achieved in this study. Instead, a fully synthetic method in which the Cas9 is transformed into the cells as a protein along with an in vitro produced guide RNA was set up and produced up to 1000 × higher mutation frequencies when compared to the traditional transformation method used for T. reesei. This study also demonstrates a simultaneous deletion of two genes in T. reesei. To the best of our knowledge, multiple simultaneous gene modifications have never been achieved in T. reesei.
  • Auvinen, Pauliina (2018)
    Assisted reproductive technology (ART) refers to treatments used for infertile couples to achieve pregnancy in vitro. The main technology of ART is in vitro fertilization (IVF), which may also include intracytoplasmic sperm injection (ICSI) and/or embryo cryopreservation and frozen embryo transfer (FET). ART treatments are well-accepted in Western countries and there is an increasing number of children being conceived in that way. Even though, majority of ART derived newborns appear healthy, they have been associated with increased risks of adverse perinatal outcomes, especially, alterations in birth size as well as higher frequencies of imprinting disorders and alterations in epigenetic modifications, such as in DNA methylation, of imprinted genes. Epigenetically regulated imprinted genes have crucial roles in fetal and placental growth during development and they are known to be affected by environmental factors. Since ART takes place in the early embryo in vulnerable time-period of epigenetic reprogramming, ART has been suggested to impact on epigenetic profiles of the embryo, consequently, affecting the phenotype of newborns, and therefore potentially causing long-term health effects. This thesis aimed to study whether ART has effects on DNA methylation in the placenta and whether ART has effects on the phenotype of newborns. To study these effects, this thesis focused on the sixth binding sequence of CTCF (CTCF6) of H19 ICR1 of the growth-related imprinted IGF2/H19 gene locus. The aim was also to study whether the possible changes associate with the rs10732516 G/A polymorphism locating at CTCF6 of H19 ICR1. DNA methylation levels of placental tissue as well as white blood cells in umbilical cord blood of ART derived, and spontaneously conceived newborns were explored by mass spectrometry-based Sequenom MassARRAY® EpiTYPER® method and traditional bisulfite sequencing. To study the effects of ART on the phenotype of newborns, the birth weight, length and head circumference of ART and control newborns were explored using international growth standards. Moreover, placental weights were compared. The results of this thesis showed slightly, but consistently decreased DNA methylation levels at H19 ICR1 in the paternal allele of ART derived placentas in rs10732516 patA/matG genotype, but not in patG/matA genotype. Thus, the results suggest that the changes in DNA methylation at IGF2/H19 in the placenta are genotype-specific and associate with the rs10732516 polymorphism. Similar decreased methylation levels in the paternal allele of patA/matG genotype was not detected in white blood cells suggesting that the effects on DNA methylation levels are also cell type-specific. The effects of ART on the phenotype also associated with the rs10732516 polymorphism. Fresh embryo transfer derived newborns with A/A genotype were seen to have smaller birth weight than newborns with G/G genotype. Moreover, in A/A genotype, frozen embryo transfer derived newborns were demonstrated to be heavier and to have heavier placentas than fresh embryo transfer derived newborns. The findings of this thesis suggest that ART has effects on DNA methylation in the placenta and on the phenotype of newborns, and the effects associate with the rs10732516 G/A polymorphism. This underlines the significance of the polymorphism when studying the effects of ART. However, further investigations are needed to confirm these findings and to discern whether the changes are due to the ART procedures or underlying infertility.
  • Kaya, Meryem Ecem (2019)
    Synthetic biology is an emerging interdisciplinary field of biology that aims to system-atically design artificial biological systems. As synthetic biologists seek increasingly complex control over cellular processes to achieve robust and predictable systems. A new frontier in synthetic biology is engineering synthetic microbial consortia. This ap-proach employs the concept of division of labor, instead of introducing large genetic cir-cuitry to homogenous cell populations. In this approach, different cell types are assigned to execute a portion of the overall circuit. Each cell type communicates with their co-worker subpopulations to complete the circuit. The main advantage of this strategy is the reduced metabolic burden on each cell type. Thus, leading to more reliable and stable overall performance. In this work, to simplify cellular communication between the mem-bers of the consortium, we used the simple architecture of quorum sensing machinery. We constructed a toolbox that contains promoter, receptor and quorum sensing signal synthase genes along with fluorescent reporters. Using this toolbox, we constructed dif-ferent cell types that can be used in synthetic consortia forming various communication topologies. We characterized the constructed cell types individually and in co-cultures.
  • Partti, Edvard (2018)
    Kaurapohjaiset elintarvikkeet ovat terveellisiä. Monet niiden terveyshyödyt johtuvat kauran liukoisen ravintokuidun suuresta β-glukaanipitoisuudesta. β-glukaanin terveysvaikutukset ovat riippuvaisia sen molekyylipainosta ja viskositeetista. Viskositeetilla on myös muuta merkitystä kaurapohjaisissa elintarvikkeissa kuten kaurajugurteissa ja kauramaidoissa. Aiemmassa Folafibre-tutkimusprojektissa oli tutkittu kaurakuidun folaattipitoisuuden (B9 vitamiini) kasvattamista fermentoimalla sitä eri mikrobeilla. Hyvin folaattia tuottaneet mikrobit myös alensivat kaurakuituvalmisteen viskositeettia, ja erittivät glykosyylihydrolaaseja ja/tai proteaasia. Oli kuitenkin jäänyt epäselväksi, olivatko entsyymit ainut syy viskositeetin alenemiseen, ja kuinka paljon kullakin niistä oli vaikutusta viskositeettiin. Lisäksi tämän alan kirjallisuudessa on pidetty epäselvänä, onko esim. tärkkelyksen ja β-glukaanin välillä jotain interaktioita jotka mm. nostavat niiden viskositeettia yli yksittäisten polymeerien viskositeetin summan. Näitä voitaisiin selvittää puhdistamalla viskositeettia alentaneista mikrobikannoista kyseiset entsyymit ja tutkimalla niiden vaikutusta kaurakuidun viskositeettiin. Yhdeksi mikrobiksi valittiin Exiguobacterium sp. RB3 kanta, koska em. syiden lisäksi tässä bakteerisuvussa esiintyy psykrofiilejä ja mikrobeja jotka voivat kasvaa korkeassa pH:ssa, jolloin sen erittämät entsyymit saattaisivat olla aktiivisia matalissa lämpötiloissa ja korkeassa pH:ssa, ja olla siten teollisesti kiinnostavia. Toiseksi mikrobiksi valittiin Bacillus sp. ABM5119, koska sitä oli käytetty monissa Folafibre-projektin tutkimuksissa. Työn tavoitteena oli puhdistaa Bacillus sp. ABM5119:n endo-β-1,4-glukanaasi, ja Exiguobacterium sp. RB3:n α-amylaasi ainakin siinä määrin, että ne ovat muista endoaktiivisista glykosyylihydrolaaseista ja proteaaseista puhtaita, ja sitten mitata puhdistettuja entsyymejä ja proteaasia käyttäen niiden vaikutus yhdessä ja erikseen keitetyn kaurakuituvalmisteen viskositeettiin. Lisäksi tavoitteena oli karakterisoida Exiguobacterium sp. RB3 amylaasin olennaisimmat biokemialliset ominaisuudet, sekvensoida sen geenin amylaasia koodaava alue, ja selittää sen ominaisuuksia myös sekvenssistä johdettavissa olevan tiedon perusteella. Keitetyn kaurakuitupreparaatin viskositeettia alentavat eniten α-amylaasi ja endo-β-1,4-glukanaasi. Proteaasi ei vaikuta kaurakuitupreparaatin viskositeettiin, kun kuitupreparaatti on keitetty. Endo-β-1,4-glukanaasi alentaa viskositeettia yhtä hyvin kuin β-1,3-1,4-glukanaasi. Synergiaa viskositeetin alentamisessa α-amylaasilla ja endo-β-1,4-glukanaasilla ei havaittu, mutta havaittiin että β-glukaani saattaa estää tärkkelyksen retrogradaatiota. Hyvin pienetkin entsyymiaktiivisuudet vaikuttavat viskositeettiin. Jos halutaan β-glukaanin viskositeetin ja siten terveysvaikutusten säilyvän, täytyy esim. kauramaidon valmistuksessa käytettävien entsyymivalmisteiden olla β-glukanaaseista hyvin puhtaita. Mikrobifermentaatioissa tapahtuvat viskositeetin alenemat johtuvat lähinnä mikrobien erittämistä glykosyylihydrolaaseista, ei niinkään esim. niiden metabolian sivutuotteista kuten happiradikaaleista. Exiguobacterium sp. RB3 α-amylaasi on rakenteeltaan Bacillus licheniformis α-amylaasin kaltainen glykosyylihydrolaasiryhmän 13 entsyymi. Se sitoo rakenteeseensa kolme kalsiumiatomia, ja kalsiumpitoisuus vaikuttaa sen aktiivisuuteen. Se on aktiivisimmillan pH alueella 5,0 – 7,5. Se sietää detergenttejä, toisin kuin eräs aiemmin karakterisoitu Exiguobacterium-α-amylaasi. RB3 α-amylaasin turnover number oli korkea, 29000 1/s. Exiguobacterium-suvun psykrofiilisessä haarassa esiintyy kahta eri α-amylaasia, joista yksi on tässä karakterisoitu, ja toinen on selvästi erilainen rakenteeltaan ja biokemiallisilta ominaisuuksiltaan.
  • Martins, Beatriz (2020)
    According to the latest estimations, cancer is the second leading cause of death worldwide. Despite the significant advances in the range of drugs and treatment modalities to treat cancer, the number of deaths is estimated to continue rising, posing serious challenges for the patients, their families, and the healthcare systems. Conventional treatments tend to be associated with severe adverse side effects and treatment resistance. Consequently, safer and more efficient therapy options are urgently needed, especially for the treatment of metastatic tumors refractory to conventional treatments. A new and revolutionizing field in oncology is immunotherapy, in which oncolytic viruses are included. Oncolytic viruses have an inherent or acquired selectivity to replicate exclusively in tumor cells, ultimately destroying them. Simultaneously, they also activate the dormant host’s immune system to fight against the tumor. Adenoviruses, particularly, have shown to be safe, inducing only mild adverse side effects in clinical trials, making them a great candidate for further clinical development. Adenoviruses can be genetically modified to increase their infectivity or improve the anti-cancer immune responses induced by the virus, e.g., through the expression of immunostimulatory molecules. The focus of this thesis was to develop and characterize several genetically modified oncolytic adenoviruses expressing either OX40L alone or OX40L and CD40L, two co-stimulatory molecules capable of engaging both the innate and adaptive arms of the immune system to fight the tumor. The insertion of the transgenes into the E3B-14.7k region of the Ad5/3-∆24 adenovector plasmid was performed using Gibson Assembly® cloning approach. After successful cloning, the recombinant viral genomes were transfected into A549 cells for viral amplification, followed by CsCl purification to produce a high titer viral preparation. The expression of the transgenes was studied in vitro by ELISA and functional assays, showing promising expression levels of functional OX40L and CD40L. However, when the infectivity and virus killing potency were analyzed, in vitro by immunocytochemistry and MTS assay; and in vivo using an immunodeficient mouse model, the data showed that the cloned viruses performed sub-optimally when compared to the control unarmed virus (Ad5/3-∆24). These findings suggest that the insertion of the two transgenes in place of the E3-14.7k gene was detrimental to the fitness of the virus.
  • Kerminen, Sini (2015)
    Studies of population structure are motivated by the need to understand population history and to have well-characterised groups of individuals in studies of genetics of diseases and traits. A standard method to analyse genetic population structure is principal component analysis (PCA). A disadvantage of PCA is that it can reliably handle only independent genetic markers. This means that the genetic markers that are correlated with other genetic markers have to be excluded from the data. This leads to a loss of information. In 2012, Lawson et al. published a chromosome painting method that can utilise haplotype information, i.e. information from correlated markers, and thus it can detect more subtle differences in populations than the standard PCA. This thesis studies two questions. The first question is whether the chromosome painting method can provide more precise genetic clustering of geographically defined Finnish groups than the standard PCA method. The second question is whether the chromosome painting method can reveal new details of population structure in Finland. The data used in this study are from the FINRISK Study survey of 1997. This cohort includes the genotype data of about 4,000 individuals and the information about individuals and their parents birthplaces. 345 Individuals were randomly chosen from the cohort in such a way that both of their parents were originated from the same province. Ten provinces of Finland were used as study groups for the method comparison. First, the data were analysed with SmartPCA (a standard PCA method) and ChromoPainter (the chromosome painting method) and the results were compared both visually and quantitatively. Finally, the individuals were assigned to populations based on the ChromoPainter result using FineSTRUCTURE program and these genetic populations were compared to the geographic origin of the individuals. The results showed that the chromosome painting method clustered seven out of ten groups significantly tighter than the standard PCA. Nevertheless, SmartPCA was faster and easier to use than ChromoPainter. The main population genetic division was found between the eastern and western parts of Finland, which was consistent with earlier studies. All in all, 15 populations were detected and the results revealed that they were geographically clustered. The genetic populations correlated well with the borders of Finnish provinces and counties. As the first conclusion, the chromosome painting method was able to give more precise results than the standard PCA but the standard PCA is still more suitable for quick preliminary analyses of genetic data. As the second conclusion, the chromosome painting method was able to detect detailed subpopulation structure in Finland and these populations are geographically clustered. Results provide an excellent basis for the future studies of population structure and genetic diseases in Finland.
  • Almusa, Henrikki (2013)
    The next-generation sequencing (NGS) platforms create a large amount of sequence in short amount of time, when compared to first generation sequencers. An overview of the NGS platforms is provided with more in-depth look into Illumina Genome Analyzer II as that is used to create the data for the thesis. There were two main aims in this thesis. First, to create a pipeline which can be used to analyse genomic sequencing. Second, to use the pipeline to compare whole human exome capture methods from two manufacturers, Roche Nimblegen and Agilent. The pipeline is describe in detail in material and methods. All the inputs for the pipeline are described and examples shown. In the pipeline the given sequences are first aligned against the reference genome. Then various separate analysis is performed to retrieve variants and coverage of the sequencing. Supplementary results include paired-end anomalies, larger insertion and deletion polymorphisms and assembly of non-aligned sequences. The two capture methods are also described and changes to the manufacturers' recommended protocols are listed. Finally, the section has the options and various inputs used in the pipeline runs of the exome data. The results of the pipeline is a basic level of analysis of the sequencing as well as various graphs showing the quality of the run. All the output files intended for user are described. By using the results of the pipeline, the user can do more in-depth analysis as required by the project. When comparing the two exome capture methods, the Nimblegen capture was shown to be more efficient in capturing the CCDS exome. While the Agilent capture kit provided better one fold coverage over the exome, higher fold coverage (over 10 fold), which is required for reliable variant calling in nextgeneration sequencing, was better reached using the Nimblegen capture kit. Also, significantly fewer false positive paired-end anomalies were observed in the library created by using the Nimblegen capture.
  • Duru, Ilhan Cem (2017)
    Lactobacilli are gram-positive lactic acid bacteria with wide beneficial properties for human health and food production. Today most of the fermented products and probiotic foods are produced by lactobacilli species. One of the most using area of lactobacilli species is fermented products especially dairy products. Lactobacilli species can be used as starter or adjunct cultures in dairy products and play important role for preservation and quality, texture and flavor formation. Additionally, probiotic properties of lactobacilli species provide several health effect for human by stimulation of immune system and protection against pathogens. Lactobacillus rhamnosus LC705 is a facultatively heterofermentative type lactobacilli which is used in production of dairy products as adjunct starter and protective culture. The complete and annotated genome sequence of L. rhamnosus strain LC705 published on 2009. Known characteristics of L. rhamnosus strain LC705 are food preservation, toxin removal and health benefits when combined with other probiotic strains. However, molecular mechanism behind these characteristics are not known or not clearly understood. To get further insight on these properties and roles in cheese ripening of strain LC705, we re-annotated genome of the LC705 with updated methods and databases, analyzed metabolic pathways of LC705, and performed RNA-seq experiment to determine gene expression changes of LC705 during warm room (25 °C) and cold room (5 °C) cheese ripening process. Several un-characterized proteins of LC705 were annotated (77) and 1197 enzyme commission (EC) numbers are added to annotation file with re-annotation of genes of LC705. More importantly, re-annotation provided us 72 new pathways of LC705 which is 35% of the entire collection of 201 pathways. Analyzes of pathways showed that genome of LC705 has responsible genes for production of flavor compounds such as acetoin and diacetyl which are provide buttery flavor to dairy products, and hydrogen sulfide which is a volatile sulfur compound that cause unlikeable odor. Additionally to flavor compounds, we defined genes that produce anti-fungus compounds and bacteriocin which provide food preservation characteristic to LC705. Determination of gene expression respond of LC705 during warm room and cold room cheese ripening process with RNA-Seq showed that central metabolism genes that responsible for lyase activity, degradation activity, disaccharides and monosaccharides metabolism are warm induced genes. The genes play role in citrate metabolism pathways were significantly down-regulated during cold room, citrate degradation pathways are critical for buttery flavor products, therefore buttery flavor compounds are produced by LC705 during warm room. Finally, during cold room ripening, the genes of LC705 that produces ethanol and acetyl-CoA from pyruvate was up-regulated, so we may say that LC705 uses pyruvate to produce ethanol and acetyl-CoA instead of lactic acid.
  • Domènech Moreno, Eva (2017)
    In this Master’s project, I have studied a mammalian serine-threonine kinase NUAK2 implicated in human disease but whose molecular functions and interacting proteins are as of yet poorly characterized. The goal was to identify new interacting proteins to increase understanding of the molecular functions and potentially link to human physiology and disease. Recent work from the host lab shows NUAK2 loss in cultured primary cells mimics loss of the tumor suppressor LKB1 which also acts upstream of NUAK2, together suggesting NUAK2 could be involved in tumor suppression. Currently, only two protein-protein interacting proteins with NUAK2 have been identified: NUAK2 is targeted to actin stress fibers by the myosin phosphatase Rho-interacting protein (MRIP), and it is involved in regulating cell contractility by affecting indirectly the phosphorylation cycle of the myosin light chain through inactivation of the myosin phosphatase target subunit 1 (MYPT1). In this project, I utilized a novel protein-protein interaction screening method that utilizes proximity-dependent biotin labeling to identify new interacting proteins with NUAK2 in human embryonic kidney cells (HEK 293). This method is based on fusing an E.Coli promiscuous biotin ligase, BirA*(R118G), to the investigated protein. The BirA*(R118G) ligase biotinylates all the proteins in close proximity of the fusion protein creating a history of protein-protein associations over time. Afterwards, the biotinylated proteins can be isolated by affinity purification methods and identified by mass-spectrometry. The screening identified the previously known interaction partners of NUAK2 indicating it was technically successful. In addition, I also identified in total 108 novel potential protein interaction partners for NUAK2. One of the top hits was Cytospin-A, a cross-linking protein between microtubules and actin cytoskeleton, supporting a role of NUAK2 as regulator of cytoskeleton. Supporting the validity of our finding, Cytospin-A depletion in mammalian cells causes defective actin-cytoskeleton reorganization, a very similar phenotype seen with NUAK2 depletion. In future studies, I will continue to investigate the specific role of NUAK2 and Cytospin-A aiming for detailed information on the function of NUAK2 in regulation of microtubules and actin cytoskeleton. Validation of some of the other identified interactions is expected to provide novel insights to the biology and role of NUAK2 in LKB1 tumor suppressor functions.
  • Elbadri, Khalil (2020)
    An increased attention has been drawn towards porous silicon (PSi) based materials for biomedical applications, due to their promising features demonstrated through several scientific studies. Here, we further investigated the biological responses of PSi nanoparticles (NPs) with different surface chemistries, including immunomodulatory effects, inflammation mitigation and biocompatibility. In this collaborative study, the PSi NPs were investigated both in vitro and in vivo, using different molecular biology and biochemistry techniques, e.g., qPCR, ELISA, cell sorting and cell viability assays. Our results showed the capabilities of these PSi NPs to relieve the inflammatory conditions, whereas significant decrease was recorded of pro-inflammatory cytokines: TNF-α, IL-1β and IL-6. Likewise, these PSi NPs revealed a considerable consumption aptitude of pro-inflammatory reactive oxygen species molecules. Administrating PSi NPs in an acute liver inflammation (ALI) model, showed no conspicuous influence on cellular viability. Thus, the outcome of this study demonstrates the potential biocompatibility of PSi nanomaterials, in addition to their outstanding features as potential candidates for further incorporating in ALI applications.
  • Madhav, Hema (2019)
    Abstract Antibiotics are used to prevent microbial diseases in both animals and humans. Because of the overuse of antibiotics, the microorganism now gained the ability to resist the drugs through genetic changes. Integrons are widely known for their role in the dissemination of antibiotic resistance. The class1 integrons are mostly studied in Gram-negative bacteria of clinical strain as they are reported mostly in the human and animals. The integrons having antibiotic resistance genes are linked with mobile genetic elements which help them to disseminate by the lateral gene transfer method. Previous research has proved that the class 1 integrons have sulfonamide and tetracycline resistance gene by using Long-Range PCR, Inverse PCR, and metagenomics. However, it is not clear what other possible combination of antibiotic resistance genes the class1 Integrons may carry. My thesis focuses on the class 1 integron from wastewater (both inflow and outflow water) by Long-range PCR, which can amplify fragments more than 15kb and PacBio RS long-read sequencing. Its a novel method of combining Long-range PCR and may illuminate what other possible resistance genes the class 1 integrons carry. The antibiotics resistance genes such as CatB8, -aadA2, blaOxA-1 0, IMP-38 were amplified using our designed primers from IntI1 to QacEdelta1, thus the designed primers and the optimization of Long-Range were successful. The combination of inverse PCR and Pac-Bio sequencing was successful to amplify the antibiotic resistance genes from Class 1 integrons. The Long-Range PCR saves time and gives DNA amplified products longer than 1500kb. The purified samples from long range PCR can be studied by direct sequencing using the Pac-Bio sequencer. Thus, the future implementations of the above combination of two techniques can be very useful to study the antibiotic resistance genes in the soil and polluted water. More in-depth information about antibiotic resistance genes in class 1 integrons will help to understand their dissemination.
  • March, Alexander (2016)
    This body of research focuses on establishing a drug screening pipeline for discovering drugs which increase the differentiation of pluripotent stem cells into cardiac myocytes, known as cardiogenic molecules. Cardiomyocytes can be utilized in regenerative medicine by offering a platform for testing molecules or drugs which may increase cardiomyocyte proliferation and for using cardiomyocytes produced outside of the body for clinical transplant, in order to heal the damage caused by heart attacks. Building on known models and developmental pathways three assays were designed and implemented for in vitro cardiogenic molecule screening. A pipeline comprised of three primary screening systems; an embryoid body (EB) model, a cardiomyocyte directed differentiation model, and a magnetic activated cell sort (MACS) model. The MACS model uses the cell surface receptors Fetal Liver Kinase 1 (FLK1) and/or Platelet Derived Growth Factor Receptor alpha (PDGFRα) as the most practical platform for screening drugs against an enriched mesodermal population of cells. The MACS system was confirmed with flow cytometry to ensure the enrichment of Myl2-eGFP+ (ventricular cardiomyocytes) cells in the FLK1+ cells. Furthermore unique known molecules help elucidate the molecular mechanisms governing cardiomyocyte differentiation, measured by cardiomyocyte purity in in vitro models. Also demonstrated are assay controls which decrease purity and acts as negative controls for the MACS assay such as a late stage GSK-3 Inhibitor treatment used to constitutively activate the canonical Wnt/β-catenin pathway and effectively reduce the cardiomyocyte proliferation. Additionally, an early stage Wnt Inhibitor compound IWP-4 was used as a potential positive control effectively blocking late stage activation of canonical Wnt/β-catenin pathway and increase the in vitro purity of cardiomyocytes. These controls provide two important reference points for the many molecules screened over the course of these experiments for the 3i Regeneration project. Additional molecular inhibitors are used to elucidate the mechanism of action within the MACS cells; including a Sonic Hedgehog inhibitor (cyclopamine), an NKX2.5 activator (ISX-9) and a novel small molecule (C1). These models act as an effective pipeline bringing a potential drug through first an EB model, followed by a cardiomyocyte enriched model, to finally a MACS model targeting FLK1. This pipeline tests the molecules against conditions of increasing resemblance to the native microenvironment of a cardiomyocyte.
  • Järvinen, Maija (2010)
    The growing interest for sequencing with higher throughput in the last decade has led to the development of new sequencing applications. This thesis concentrates on optimizing DNA library preparation for Illumina Genome Analyzer II sequencer. The library preparation steps that were optimized include fragmentation, PCR purification and quantification. DNA fragmentation was performed with focused sonication in different concentrations and durations. Two column based PCR purification method, gel matrix method and magnetic bead based method were compared. Quantitative PCR and gel electrophoresis in a chip were compared for DNA quantification. The magnetic bead purification was found to be the most efficient and flexible purification method. The fragmentation protocol was changed to produce longer fragments to be compatible with longer sequencing reads. Quantitative PCR correlates better with the cluster number and should thus be considered to be the default quantification method for sequencing. As a result of this study more data have been acquired from sequencing with lower costs and troubleshooting has become easier as qualification steps have been added to the protocol. New sequencing instruments and applications will create a demand for further optimizations in future.