Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by study line "Molekulaariset ja analyyttiset terveyden biotieteet"

Sort by: Order: Results:

  • Juntunen, Valtteri (2021)
    Adeno-Associated Viruses (AAVs) are quickly becoming one of the most applied vectors for gene therapy applications. In the recent years three new AAV-based gene therapies have been approved by U.S. Food and Drug Administration (FDA) and European Medicines Agency (EMA). The regulatory bodies require accurate and reliable characterisation of the clinical grade viral vectors during and after production. Analytic methods measuring the purity, potency and safety of the product support the up-stream and down-stream processes during the production and are used for final-drug substance characterisation. Median Tissue Culture Infectious Dose (TCID50) is a well-established method for measuring the infectious titer of a virus. Here, an assay for determining the infectious titer of AAVs, which has previously been used to characterise the existing AAV2 Reference Standard Material (AAV2RSM) was set up and optimised for research use at Kuopio Center for Gene and Cell Therapy (KCT). The assay utilizes the HeRC32-cell line, a HeLa clone, that stably expresses AAV Rep and Cap -proteins and in presence of adenovirus, enables the replication of recombinant AAV-vectors. The cells were grown in 96-well plates and infected with 10-fold dilution series of AAV vectors (AAV2 and AAV6) using human adenovirus type 5 as the co-infector. 72 hours post infection the vector genome replication of AAV was detected with quantitative PCR (qPCR). Thresholds for qPCR determined copy number and cycle threshold (Ct) were set and used for the determination of infection-positive wells. The 50-percent endpoint was observed and used to calculate the infectious titer according to the Spearman-Kärber method. The assay was set up and optimised with the AAV2 Reference standard material (AAV2RSM) using two different primer-probe sets (targeted sequences were; SV40 polyadenylation signal and AAV inverted terminal repeats (ITRs)). Plates infected with AAV2RSM were analysed separately with both primers resulting in mean infectious titers of 8.07 ± 3.13 x 108 TCID50 Infectious Units (IU) / mL (n = 9) and 1.27 ± 0.464 x 109 TCID50 IU/mL (n = 9) for SV40 and ITR, respectively. After the assay was set up with the AAV2RSM, an in-house AAV6 product was analysed with the ITR primers yielding 6.09 ± 3.94 x 109 TCID50 (IU) / mL (n = 5). The assay protocol was successfully set up for research use at the KCT laboratory. Improvements were added to the original protocol to increase assay robustness, accuracy and precision as well as to minimize the possibility of over-estimation of the infectious titer. The assay can be further optimised for a particular therapeutic AAV product in the research laboratory or technology transferred to a production facility for optimisation and validation for the analytics needs of a production pipeline.
  • Heinonen, Maria (2021)
    Skeletal dysplasias are a group of rare monogenic bone disorders affecting joints and the skeleton. An increasing number of gene defects have been associated with skeletal dysplasias, but many cases remain without a known cause or a clear diagnosis. Exome sequencing data of the family with two siblings affected with an undiagnosed type of bone dysplasia was examined in this study with the aim of determining the genetic cause behind the phenotype. The causal variant was assumed to be in a novel disease-causing gene, since a previously performed gene panel of skeletal disease-causing genes had not revealed any positive results. The search for potential rare pathogenic variants in genes linked to the skeleton was done with VarAFT filtering software. The search revealed a short list of candidate variants confirmed first with Broad Institute’s Integrative Genomics Viewer (IGV) and then with targeted Sanger sequencing. Conservation analysis on the affected amino acids, in silico functional analysis on the variants and a comprehensive literature review on all candidate genes were performed to evaluate the likelihood of them being the variant behind the phenotype. A shortlist of three genes were obtained with the analyses, with one of them seeming to be the most likely candidate. However, to assuredly identify the disease-causing variant, further testing should be performed. Functional analyses should be done to test the functions of the proteins encoded by the candidate genes and the consequences of the pathogenic variants.
  • Uski, Ilona (2021)
    Tumors contain variable number of different immune cells that infiltrate the tumor microenvironment, such as tumor infiltrating lymphocytes (TILs). More research is needed to understand the functional and clinical importance of various TIL subgroups in cancer. Understanding the differences between individual cancer patients will help development of new treatment methods and discovering why only some patients respond to immunological treatments. Renal cell carcinoma (RCC) is the most common kidney cancer type with good overall survival prognosis when the tumor is surgically removed before it has metastasized. However, the prognosis of RCC is significantly decreased when the cancer has spread. The aim of this master’s thesis project was to characterize the tumor infiltrating lymphocyte populations in patient derived RCC samples. Characterization was done with flow cytometry and a custom antibody panel designed to detect various lymphocyte subpopulations. We also wanted to further study the TILs by expanding the lymphocytes from the tumor samples and test their function in an impendence-based assay against matched autologous tumor cells. Based on the flow cytometry results, the different RCC subtypes in the cohort showed some variation in TILs. Still, more research is needed to investigate these differences. We were able to culture the TILs from the RCC tumor samples, and most of them were CD4+ T cells expressing memory markers CD45RO and CCR7. Some expanded TILs expressed markers related to T cell activity and terminal differentiation. In conclusion, this thesis provided material and insights for future RCC TIL experiments as well as considerations for optimization needed in further studies.
  • Toropainen, Siiri (2020)
    Human induced pluripotent stem cells (hiPSC) can be propagated in a long-term culture and further differentiated into many cell types, including cardiomyocytes (CM) and endothelial cells (EC). Human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CM) are promising tools in cardiac research, since they retain the original genotype of the individual donor and thus enable the use of patient- and disease specific cells. Crucial for the optimal use of hiPSC-CMs in experiments are methods for assessing cardiomyocyte phenotype. Contraction is a prominent feature for CMs, and it is essential that contraction can be quantified accurately. Reliable quantification is relevant when hiPSC-CMs are used for studying disease phenotypes, cardiac safety pharmacology, genotype-phenotype correlations, cardiac disease mechanisms and cardiac function over time. In this thesis project, contractile behavior of hiPSC-CMs was analyzed using video microscopy and online tool MUSCLEMOTION. Contraction parameters were obtained from hiPSC-CMs derived from patients with hypoplastic left heart syndrome (HLHS) and healthy controls on multiple timepoints during differentiation. In addition, contraction was analyzed in iPSC-CMs cocultured with induced pluripotent stem cell derived endothelial cells (iPSC-ECs), since it has been suggested that ECs can promote morphological and functional maturation of CMs in culture. Contraction duration (CD), time to peak (TTP), relaxation time (RT) and contraction amplitude (CA) was compared between different timepoints as well as between CMs cocultured with ECs and CMs cultured alone. Compared to control cell lines, HLHS patient hiPSC-CMs exhibited longer CD, TTP and RT as well as higher CA values. This difference was present in most of the timepoints, suggesting slower contractile kinetics in HLHS patient iPSC-CMs compared to control iPSC-CMs. Significant changes were also observed in contraction parameters when comparing hiPSC-CMs in coculture and monoculture. Contraction parameters of coculture iPSC-CMs changed in a relatively consistent manner over time, increasing or decreasing throughout the monitoring period whereas in hiPSC-CM monoculture there was more variation between timepoints. This project and results support the use of modern methods in detailed functional characterization of hiPSC-derived cells. In addition, it highlights the potential of coculture in disease modeling and the fact that hiPSC-CMs express variation in phenotypes. However, experiments should be repeated, and additional methods should be used in order to further validate the results and conclusions.