Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "ASCL1"

Sort by: Order: Results:

  • Kalyanaraman, Shringaa (2024)
    Schizophrenia, a mental disorder affecting over 1% of the world’s population, has a 41-65% chance of being acquired in monozygotic twins, and shows a complex heritable pattern. Research has shown the involvement of various neuronal and glial cell types in the disorder’s progression. Recent studies are focusing on cortical interneurons, as clinical features of schizophrenia such as working memory deficits emerge due to the abnormal activity of these cells . The advent of induced pluripotent stem cell (iPSC) technology has made it easier to study schizophrenia disease mechanisms, with studies revealing differences in morphological and physiological properties of cortical interneurons in patients with schizophrenia. In this thesis , the aim was to optimize iPSC-interneuron differentiation protocol and live-cell imaging method suitable for disease modelling. Interneurons were differentiated from iPSCs with overexpression of inducible transcription factor, Achaete-scute homolog 1 (ASCL1). The iPSCs were derived from twin pairs discordant for schizophrenia and from healthy controls. Expression of interneuron-specific markers was verified using RT-qPCR and validated at the protein level by an immunocytochemistry (ICC) assay in the control cell lines first. Additionally, to estimate the formation of neurites and differences in neurite length and branching, the differentiated interneurons from the controls were subjected to live-cell imaging by IncuCyte S3 live-cell imaging system. Imaging parameters such as cell body cluster filter was optimized to visualize the neurites. To study interneuron involvement in schizophrenia, iPSCs from one twin pair discordant for schizophrenia were successfully differentiated. Interneurons strongly expressed Gamma-aminobutyric acid (GABA) neurotransmitter related neuronal markers: glutamate decarboxylase 67 (GAD67) and GABA at protein level. The neurons were identified as somatostatin (SST) subtype GABAergic neurons by their mRNA and protein expression. While it was possible to observe differences in gene expression, there were no clear differences in the morphology of the differentiated cells as well as the localization of markers in comparison to the healthy controls. Further studies should focus on having a protracted time for differentiation where more mature interneurons can be produced by establishing co-cultures with excitatory neurons. This will help replicate the in vivo cortical machinery which in turn will aid in better understanding of disease mechanisms.