Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "AcrⅡA2-cdt1"

Sort by: Order: Results:

  • Soppa, Inkeri (2020)
    The Clustered Regularly-Interspaced Short Palindromic Repeats (CRISPR) and CRISPR associated protein (Cas9) (CRISPR-Cas9) system is a widely used gene editing technology due to its potential to alter the genome precisely in desired locations. Due to the potential of the CRISPR-Cas9 system, the objective of the thesis is to improve the precise editing of genes by modifying the CRISPR-Cas9 platform. Ultimately, the aim is to develop a platform that can edit any mutation and repair it to a normal, functional gene in patient cells. In general, CRISPR-Cas9 provides opportunities in treating monogenic diseases, for example by modifying long-term hematopoietic stem cells in immunodeficiencies. CRISPR-Cas9 can target disease-causing mutation sites and introduce double-strand breaks. Afterwards, the native DNA repair machinery of a cell repairs the cut site either by more efficient, error-prone non-homologous end joining (NHEJ) or precise homology-directed recombination (HDR). In most clinically oriented genome editing studies, the desired repair outcome is the latter because it allows precise repair of the mutation according to the exogenous repair template. Despite all its positive features, the optimization of CRISPR-based editing system is crucial before medical use; CRISPR-Cas9 induces a p53-mediated DNA damage response, which leads to a transient G1 cell cycle arrest and hampers HDR-based precision genome editing. Other problems include the repair pathway depending on the cell cycle phase, repair template proximity, and off-target activity. This thesis demonstrates that Cas9 fusions allow addressing the problems mentioned above. Cas9 fusions with DNA repair proteins ensure improved editing efficiency at the close proximity to the target site in HEK293T, BJ5-ta and RPE reporter cell lines. In addition, Cas9 coupled with the engineered cell cycle timer, AcrⅡA2-cdt1, favors the editing at the S/G2 cell cycle phases avoiding the p53-mediated response. AcrⅡA2-cdt1 is a reversible, phage-derived CRISPR inhibitor that selectively inhibit CRISPR-Cas9 at the G1 cell cycle phase and releasing it at the S phase. This thesis provides extensive look on the CRISPR-Cas9 editing and its challenges in immortalized cell lines and primary cells. In the thesis, the generation of reporter cell lines is prior to the validation of the novel Cas9-fusions. Furthermore, the optimization of primary T cell and CD34+ hematopoietic stem cell electroporation with different electroporation systems brings the study closer to clinical applications. The thesis provides insights about the effect of the target site and the cell type for genome editing outcomes. The editing efficiencies depend on the Cas9 fusion protein, cell type and its proliferation rate. The editing efficiency in primary T cells and CD34+ hematopoietic stem cells can significantly improve by optimizing transfection and culturing conditions, such as concentration of the CRISPR-Cas9 complex, cell culturing time and electroporation program. Cas9 fusions improve the safety and efficiency of the CRISPR-Cas9 system depending the cell type and the proliferation rate of the cell. Timing the induction of double-strand breaks also improves the editing efficiency. Overall, the methods used in the thesis give useful tools for eventual translational applications.