Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "CRISPR-Cas9"

Sort by: Order: Results:

  • Lukander, Volter (2022)
    Spinal muscular atrophy of Jokela type (SMAJ) is an autosomal dominant motor-neuron disease caused by a missense mutation c.197G>T, p.G66V in the gene CHCHD10. Coiled-coil-helix-coiled-coil-helix domain-containing protein 10 (CHCHD10) is a nuclear-encoded mitochondrial protein located in the intermembrane space (IMS) of mitochondria with an unknown exact function and disease-causing mechanism. In this project, the overarching aim was to correct a heterozygous SMAJ-causing mutation in patient myoblast cells with CRISPR-Cas9 genome editing. The goal was to create a genetically identical, isogenic, cell line to study only the effects of the mutation on cellular phenotype in vitro. Human myoblast cells isolated from patient biopsies provide the most pertinent experimental model to study neuromuscular atrophy-associated mutations in their natural genomic environment. More specific aims included genome editing optimization with myoblast cells, since it is not as widely conducted as with some other cell types, such as iPSCs. CRISPR-Cas9 ribonucleoprotein (RNP) complex and associated donor template were used to induce homology-directed repair (HDR) in the genome of patient-derived myoblast cells and correct the mutation. After optimization of electroporation conditions for myoblast cells, guide RNAs were designed and transfected into patient myoblasts. Clonal cell lines were made by utilizing techniques such as fluorescence adjusted cell sorting (FACS) and manual colony picking. The success and precision of genome editing were analyzed by Sanger sequencing, comparing the performance of the different guide RNAs with restriction enzyme analysis and Synthego ICE CRISPR web tool, and screening regions of potential off-target genome editing. A genome-edited myoblast cell line with the CHCHD10 c.197G>T mutation corrected, was successfully generated to provide an isogenic control for the patient myoblast cell line. Optimization of myoblast electroporation was successful and conditions used proved to be effective. Clonal cell line creation proved to be challenging with myoblast cells and work is still needed to improve the viability of single-cell clones after FACS. Nevertheless, the advances taken here regarding myoblast genome editing with CRISPR-Cas9 offer a fertile avenue for future research of myoblasts genome manipulation, myogenic disorders, and the role of CHCHD10 in skeletal muscle and SMAJ. Comparing the CHCHD10 protein level and mRNA expression between patient cells, corrected myoblasts, and differentiated myotubes is an area of future research. Future work also includes measuring the mitochondrial integrated stress response in both cell lines and co-culturing myotubes and iPSC derived motor neurons to study the effects of p.G66V on neuromuscular junction (NMJ) formation.
  • Alajoki, Reetta (2023)
    Uterine leiomyomas (ULs) are common benign tumors that originate from the smooth muscle cells of the uterine wall known as the myometrium. Around 70% of pre-menopausal women are affected by these tumors. The high prevalence of ULs is a significant public health issue and ULs are the leading cause for hysterectomy. Many tumors remain asymptomatic, but 15-30% of affected women develop symptoms ranging from pain and heavy menstrual bleeding to pregnancy complications and infertility. Despite their common occurrence, the underlying mechanisms of UL genesis are still largely unknown. Based on mutually exclusive recurring genetic alterations, ULs can be divided into molecular subclasses. Three main molecular subclasses have been established: MED12 mutated tumors, HMGA2 overexpressing tumors and tumors with biallelic FH inactivation. Combined, these three subclasses represent around 90% of ULs, indicating that additional smaller molecular subclasses also exist. Recently, novel mutations associated with ULs have been identified in genes encoding for subunits of the SRCAP chromatin remodeling complex that deposits histone variant H2A.Z onto chromatin. These included loss-of-function mutations in YEATS4, DMAP1 and ZNHIT1, and resulted in deficient H2A.Z loading in the tumors. The detailed functional consequences of these driver mutations need to be further investigated to fully understand their significance in UL genesis. This work aimed to elucidate the effects of YEATS4 mutations by characterizing previously established CRISPR-Cas9 edited immortalized human myometrial cell models carrying heterozygous mutations in YEATS4 using various molecular biology methods. Subcellular fractionation and western blot analysis was used to detect chromatin bound H2A.Z from cell lysates. Quantitative PCR was performed to determine relative YEATS4 expression levels in mutated and wild-type cells. No significant reduction of chromatin bound H2A.Z or YEATS4 expression was observed in the studied heterozygous mutants when compared to wild-type immortalized myometrial smooth muscle cells. Additional myometrial cell models were created by CRISPR-Cas9 gene editing. Objective was to achieve homozygous YEATS4 mutations to better reflect the changes previously reported in ULs. One homozygous YEATS4 mutant cell line was achieved. Understanding the detailed molecular mechanisms behind UL genesis will be instrumental for developing curative non-invasive therapies in the future. Insight into dysregulated pathways and identification of UL biomarkers could improve diagnostic accuracy and help design personalized targeted therapies effective for specific UL subclasses. Characterization of each molecular subclass offers a unique opportunity to understand UL genesis.
  • Er, Safak (2018)
    As a genome editing tool, CRISPR-Cas9 has provided a robust way to generate mutations in the gene of interest, at a certain time point, and in selected cell populations. The impairment of dopaminergic neurons in the substantia nigra is addressed to be one of the main pathologies of Parkinson’s disease. The histopathology of Lewy Bodies, with an undetermined role, accompanies the demise of DA neurons. Development of strategies for the prevention the neurodegeneration has a potential to slow down the progression of Parkinson’s disease. In this study, a novel, neuron-specific CRISPR-Cas9 system was developed for the purpose of dissecting neuroprotective pathways in primary dopaminergic neurons. The optimization of the tool was done by targeting EGFP at TH-positive neurons obtained from transgenic animals expressing EGFP in dopaminergic neurons. Complete loss of EGFP was achieved at day 6 after the introduction of the CRISPR-Cas9 via lentiviral vectors. There were no survival or transduction efficiency differences. Two significant pathways for the survival of dopaminergic neurons, the microRNA biogenesis and GDNF/RET signaling were selected to collect the preliminary data. Dicer, Trbp, Translin, Ago-2 and Ret were targeted with single sgRNAs, which were specifically designed to create indel mutations in these genes, and specific lentivirus vectors were produced with each guide. After transduction with the lentivirus vectors, survival of the TH-positive neurons was unaffected. Data obtained from the quantitative PCR suggested that there was 50-70% decline in transcript levels of Trbp. However, the unchanged transcript levels of the other miRNA-related targets suggest the need for further optimization of the specific guides. Knockdown of Ret was validated by inhibition of pharmacological benefits of GDNF. Overall, this research has shown the further development of this CRISPR-Cas9 tool would be useful to dissect neuroprotective signaling pathways in dopaminergic neurons.
  • Grönlund, Katja (2023)
    Nuclear receptor subfamily 5 group A member 1 (NR5A1) is a master regulator of both steroidogenesis and gonadal development. Disruptions of NR5A1 can result in differences in sexual development (DSD). With proven interspecies differences in NR5A1 functioning and human material not being available, human stem cells are one of the most achievable, ethical, and accurate models to study the earliest developmental stages of foetal life. However, in currently existing human stem cell-derived gonadal models the expression of NR5A1 has been insufficient without artificial induction due to the lack of knowledge of its distinct biological mechanisms, endogenous ligands, and co-factors. A functional reporter cell line would enable high throughput microscope screening of differentiation protocols with expressed NR5A1. The aim of this thesis was to generate a functional monoclonal human embryonic stem cell (hESC) reporter line for the gene NR5A1 with Alt-R CRISPR-Cas9 ribonucleoprotein (RNP) complex. Firstly, an efficient guide RNA was determined for NR5A1 by T7 assay, and a homology-directed repair (HDR) donor plasmid was designed based on it. Secondly, monoclonal hESC lines were generated with the Alt-R CRISPR-Cas9 RNP complex knock-in method and HDR donor plasmid via electroporation and single-cell sorting. Finally, monoclonal hESC reporter lines were screened with Touchdown PCR and a functionality analysis based on fluorescence and mRNA expression was performed. Two monoclonal hESC reporter lines H9-NR5A1-eGFP cl. 1 and dual-inducible H9-NR5A1-DDdCas9VP192-eGFP cl. 28 were established by using Alt-R CRISPR-Cas9 RNP complex. However, a functional validation performed on H9-NR5A1-DDdCas9VP192-eGFP cl. 28 cells showed the cell line to be non-functional upon NR5A1 upregulation regardless of the expressed eGFP mRNA detected with RT-qPCR.
  • Soppa, Inkeri (2020)
    The Clustered Regularly-Interspaced Short Palindromic Repeats (CRISPR) and CRISPR associated protein (Cas9) (CRISPR-Cas9) system is a widely used gene editing technology due to its potential to alter the genome precisely in desired locations. Due to the potential of the CRISPR-Cas9 system, the objective of the thesis is to improve the precise editing of genes by modifying the CRISPR-Cas9 platform. Ultimately, the aim is to develop a platform that can edit any mutation and repair it to a normal, functional gene in patient cells. In general, CRISPR-Cas9 provides opportunities in treating monogenic diseases, for example by modifying long-term hematopoietic stem cells in immunodeficiencies. CRISPR-Cas9 can target disease-causing mutation sites and introduce double-strand breaks. Afterwards, the native DNA repair machinery of a cell repairs the cut site either by more efficient, error-prone non-homologous end joining (NHEJ) or precise homology-directed recombination (HDR). In most clinically oriented genome editing studies, the desired repair outcome is the latter because it allows precise repair of the mutation according to the exogenous repair template. Despite all its positive features, the optimization of CRISPR-based editing system is crucial before medical use; CRISPR-Cas9 induces a p53-mediated DNA damage response, which leads to a transient G1 cell cycle arrest and hampers HDR-based precision genome editing. Other problems include the repair pathway depending on the cell cycle phase, repair template proximity, and off-target activity. This thesis demonstrates that Cas9 fusions allow addressing the problems mentioned above. Cas9 fusions with DNA repair proteins ensure improved editing efficiency at the close proximity to the target site in HEK293T, BJ5-ta and RPE reporter cell lines. In addition, Cas9 coupled with the engineered cell cycle timer, AcrⅡA2-cdt1, favors the editing at the S/G2 cell cycle phases avoiding the p53-mediated response. AcrⅡA2-cdt1 is a reversible, phage-derived CRISPR inhibitor that selectively inhibit CRISPR-Cas9 at the G1 cell cycle phase and releasing it at the S phase. This thesis provides extensive look on the CRISPR-Cas9 editing and its challenges in immortalized cell lines and primary cells. In the thesis, the generation of reporter cell lines is prior to the validation of the novel Cas9-fusions. Furthermore, the optimization of primary T cell and CD34+ hematopoietic stem cell electroporation with different electroporation systems brings the study closer to clinical applications. The thesis provides insights about the effect of the target site and the cell type for genome editing outcomes. The editing efficiencies depend on the Cas9 fusion protein, cell type and its proliferation rate. The editing efficiency in primary T cells and CD34+ hematopoietic stem cells can significantly improve by optimizing transfection and culturing conditions, such as concentration of the CRISPR-Cas9 complex, cell culturing time and electroporation program. Cas9 fusions improve the safety and efficiency of the CRISPR-Cas9 system depending the cell type and the proliferation rate of the cell. Timing the induction of double-strand breaks also improves the editing efficiency. Overall, the methods used in the thesis give useful tools for eventual translational applications.
  • Salumäe, Astrid (2020)
    In biotechnological protein production and metabolic engineering, regulating the expression of genes is essential. For this, expression systems composed of promoters, terminators and transcription factors are essential. So far, majority of these systems use native promoters and transcription factors. That however rises two problems: 1) these systems usually work in only a set of closely related species, 2) native regulatory components can cause unintended expression levels due to the complexity of cellular regulation. Recently, a synthetic expression system (SES) was established for a wide range of fungal species. The transcription factor used in this system comprises an activation domain that originates from a virus. However, in the field of biotechnology and especially food industry, viral DNA constructs are not favorable because of customer concerns. In this paper, plant-derived activation domains were screened in Trichoderma reesei and Pichia pastoris using mCherry as a target gene for measuring the expression levels. The best expression systems were also tested for protein production in T. reesei and P. pastoris. We tested the production of two different proteins – a bacterial xylanase and a phytase. Two of the novel activation domains provided similar expression levels to the viral activation domain in both fungi. In addition, we developed optimized expression systems for an unconventional yeast from Zygosaccharomyces spp. using the novel transcription factors. The best SES version was used for secretion signal sequence screening for xylanase protein production. To further improve the use of T. reesei as a production host, the CRISPR-Cas9 system with the Cas9 D10A nickase version was tested for transformation of T. reesei. Here, we demonstrated the genomic integration and expression of Cas9 D10A nickase in T. reesei using the SES system with the novel plant-derived activation domain. Furthermore, we successfully transformed the T. reesei Cas9 D10A nickase expressing strain using only guide-RNAs and a donor DNA.