Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "Conservation"

Sort by: Order: Results:

  • Gonzaga Roa, Amaia (2023)
    Deforestation is the main threat to biodiversity, ecological integrity and socio-ecological resilience of the of the Amazon biome, one of the most biodiverse places on Earth and home to at least 2 million people. A complex network of diverse protection strategies exists across the Amazon as key component of the global strategy to halt biodiversity loss. Biosphere reserves are a part of this network that aims to create spaces to learn how human communities can develop sustainably, while the protecting the environment, by implementing a zonation system with different degrees of protection We consider that it is necessary to produce relevant efficiency assessments on area-based conservation strategies in this region, and to understand how different protection strategies affect conservation outcomes. We used state-of-the-art matching methods to create a counterfactual deforestation avoidance measure of seven Biosphere reserves the western Amazon: Yasuní, Podocarpus-El Cóndor, Sumaco, Manu, BIOAY, Pilón Lajas and Beni. We obtained diverse efficiency results, some of the studied reserves avoiding large quantities of deforestation to reserves that were attracting deforestation. We found that more strictly protected zones were subjected to significatively lower relative pressure levels and did not have higher deforestation avoidance values. Representativity of the matched treatment area was also lower for these zones, meaning that the matching analysis was more difficult to perform in these areas. These research findings add to growing evidence about the important role of biosphere reserves in buffering against deforestation in one of the world’s most important biodiversity hotspots.
  • Harmoinen, Katri (2019)
    New Zealand is an isolated landmass laying in the Southwest Pacific waters, far away from any major islands or continents. It was the last major landmass to be colonized by people, discovered by the first Polynesian explorers around a thousand years ago. Historically, New Zealand lacked all native mammals (apart from three species of bats) and so has developed a plethora of bird species and other endemic wildlife. The absence of mammalian predators, combined with the continuous isolation for millions of years, has led the evolution of some very unique and charismatic species. One of these species is the iconic symbol of New Zealand – the kiwi (Apteryx spp). The biggest challenge to the New Zealand wildlife has been the introduction of mammalian species to the New Zealand ecosystem. There are 25 species of introduced mammals in New Zealand today that are regarded as pests. The devastation caused by these species is the main cause for the dramatic decline of the endemic New Zealand wildlife, including the iconic kiwi. Nationally, kiwi continue to decline by more than 2% annually and there are estimates of the species going extinct from the wild within 50 years. Since the first more permanent human settlement, more than 50% of the New Zealand breeding birds have gone extinct. In this thesis, the relation between kiwi and introduced mammalian species around the township of Whakatāne, New Zealand, was studied. During summer 2018-2019, three out of eight monitored kiwi chicks were predated by a suspected mustelid/mustelids and DNA swabs were obtained from the bite sites. Volunteer pest trappers were then asked to bring in all their catches in an attempt to catch the individual/individuals responsible for the predations. Molecular tools including microsatellites were used to create ID profiles in an attempt to match the profiles to those obtained from the kiwi chicks. In the second part of the study, the stoats’ stomachs were analysed as part of a diet study. A new, kiwi specific DNA probe was trialled and the remaining stomach contents were sequenced for other native wildlife species. Out of the three predated kiwi chicks, all of them were confirmed to be stoat predations. Unfortunately, none of the stoat ID profiles obtained matched the profile of the kiwi chick Ranui who was the only chick a good micro-satellite profile was obtained for. This confirmed that the stoat/stoats responsible for the predation of Ranui was not caught as part of this study. In the diet part of this thesis, we trialled the kiwi specific probe but could not identify any kiwi DNA in the stoat stomach contents. The DNA sequencing however revealed five other species: tomtit (lat. Petroica macrocephala, 100%), common chaffinch (lat. Frigilla coelebs, 100%), tui (lat. Prosthemadera novaseelandiae, 96%), European hare (lat. Lepus europaeus,100%) and copper skink (lat. Cyclodina aenea, 100%). These findings shed new light on the extent introduced mammalian species contribute to the species loss taking place in the New Zealand forests today. The use of molecular techniques and tools in conservation offers an often faster, cost-efficient and more reliable alternative to traditional monitoring methods of introduced species. The rapid development of these tools has seen New Zealand taking critical steps towards one day becoming predator free. The ambitious goal to rid New Zealand of target introduced species (mustelids, possums and rats) by year 2050 (Predator Free 2050), has been compared as the New Zealand equivalent of putting the man on the moon.