Browsing by Subject "Corneal epithelium"
Now showing items 1-1 of 1
-
(2020)Cornea is transparent layer of cells lying in front of lens. The corneal epithelium, a squamous epithelium, covers the ocular surface and ensures proper vision by preserving the integrity of the eye. Corneal epithelium is renewed continuously throughout life from a pool of stem cells (SC). There are still conflicting theories about the localization of stem cells required for the growth, renewal and maintenance of the corneal epithelium. Previous studies demonstrated that the limbus, located in the periphery of the cornea, serves as the stem cell niche (SCN) in adults. However, contrasting evidence from clonal analysis proposes that, in early postnatal life, renewal is fuelled by SCs located in the basal layer of the central cornea. There are alternate patterns of renewal in young and adult mouse cornea and that there is an important, transitional time frame called cornea maturation, when the adult patterns of gene expression, cell dynamics and tissue renewal are established. In the cornea, solid SC markers are still missing, yet studies on human limbal cells have suggested Bmi1 and C/EBPδ as limbal SC markers. There are, indeed, long-lived SCs in the central cornea and that the gene Bmi1 plays a role in these central corneal SCs. However, the physiological importance of these Bmi1+ cells remains obscure. The main aim of this project is to understand the fate and dynamics of these Bmi1+ cells and study the chronology of maturation of the cornea. In this study, I have also tried to correlate the growth of eye size with proliferation of corneal epithelial cells This study was conducted using few different kinds of transgenic mice (Mus musculus). To study the fate of Bmi1+ cells, two different mouse lines were crossed: Bmi1-CreER and ROSA26-LacZ. Mice carrying both alleles were used for lineage tracing experiments. Moreover, Hematoxylin-eosin staining was used to follow the eye morphology. Immunohistochemistry was performed to follow the chronology of maturation of the cornea, proliferation of corneal epithelial cells and the location of Bmi1+ cells in corneal epithelium. From this study, we can propose that cornea maturation is completed by the time of eyelid opening, which take place two weeks after birth. Krt19 is perfect for studying the chronology of the corneal epithelium, immunostaining of Krt19 separates the territory of limbus from central cornea enabling to distinguish limbus distinctly. Proliferating cells reside in basal layer of cornea. Bmi1+ cells found throughout the basal layer of the cornea that locally renews the corneal epithelium concluding Bmi1+ cells as the progenitor cells.
Now showing items 1-1 of 1