Browsing by Subject "Parkinson’s disease"
Now showing items 1-5 of 5
-
(2020)The human gut is inhabited by gut microbiota, a complex and diverse ecological community of trillions of microbes that affect both the normal human physiology and countless disease states and susceptibilities. Understanding the composition, functions and the causes and effects of changes in the microbiota is invaluable for understanding diseases that are connected to the microbiota and developing better treatments to the diseases. The gut microbiota varies between individuals and keeps changing over time. Behind the variability are e.g. the person’s age, genetics, diet, environment, and especially diseases and the use of antibiotics. When antibiotic use disrupts the gut microbiota, the changes can persist for years. Antibiotic resistance tends to increase after the use of antibiotics. Since antibiotic resistance in bacterial pathogens is considered a major health threat, the characterization of the human gut resistome (the antibiotic resistance genes (ARGs) found in the gut microbiota) is of great medical interest. Next-generation sequencing techniques have enabled studying also those microbe species that cannot be cultured at the moment. Metagenomics provides information on all genetic material collected from a given environment and enables searching for any sequences of interest within it, e.g. ARG sequences. The development of Parkinson’s disease (PD) is suspected to begin in the enteric nervous system and spread from there toward the central nervous system. The use of antibiotics could be linked to PD through their effects on gut microbiota, and since these effects are modified by the gut resistome, the aim of this study was to find gene sequences coding antibiotic resistance in human gut metagenomics data originating from stool samples of PD patients and healthy controls, and to find out potential differences in the occurrence of antibiotic resistance genes in the gut microbes of the two study groups. DeepARG was the chosen method for searching antibiotic resistance gene sequences in the metagenomics data. The statistical data analyses, including alpha diversity, multivariate analyses, and differential abundance analysis, were performed with the R statistical programming language in RStudio. DeepARG found 840 different ARGs in 192 samples. The ARGs belonged to 29 different ARG classes. The alpha diversity analysis showed a small estimated difference between PD and control groups indicating a possible slightly higher ARG diversity in the PD group. Multivariate analysis did not give any strong suggestions of definite biologically meaningful differences between the study groups. 16 ARGs were deemed differentially abundant in the study groups. BepE, cmeA, cmlv, dfrE, mefC, msrB, opcM, oprM and RbpA seemed to have increased abundance, and arnC, BN537_02049, dfrK, mgrA, murA, tet35 and tetT were suggested to have decreased abundance in PD patients compared to the healthy controls. These ARGs do not appear interconnected in any other way except for some sharing antibiotic types to which they offer resistance, and some having similar resistance mechanisms. In the light of an ongoing, unpublished epidemiological study of the connection between PD and the use of antibiotics it would seem that only three ARGs (msrB, mefC and dfrE) might be somehow relevant in PD development, but their effects, if any, are most likely minor. Eight ARG classes were shown to have differential abundance between PD patients and healthy controls. Bacitracin, fosfomycin and polymyxin classes showed decrease and chloramphenicol, fosmidomycin, puromycin, rifampin and sulfonamide classes showed increase in abundance in PD compared to controls. The change in the abundance of a certain ARG could reflect change in the abundance of the bacteria carrying that resistance gene. If so, the follow-up questions would be how much change in the abundance of bacteria is due to the use of certain antibiotics and how much is caused by environmental factors. It also remains to be studied whether specific antibiotics associated with the ARGs that in this study showed differential abundance in PD patients and healthy controls might have an actual role in PD development. The results of this thesis study are later to be combined with and further studied alongside information coming from ongoing studies on antibiotics use in general population and in PD patients. While this study did not concentrate its efforts into finding novel ARGs, the metagenomics dataset could also in the future be applied for that purpose.
-
(2020)Endoplasmic reticulum (ER) stress is caused by the accumulation of unfolded proteins in the ER, which leads to the activation of unfolded protein response (UPR) through three transmembrane protein sensors located in the ER membrane. The sensors correspond to three branches of the UPR, namely protein kinase RNA-like endoplasmic reticulum kinase (PERK), activating transcription factor 6 (ATF6), and inositol-requiring enzyme 1 (IRE1) branches. Upon ER stress, IRE1 dimerizes and oligomerizes, and its endonuclease domain is activated. It specifically targets X-box-binding protein 1 (XBP1) mRNA, from which a 26 nt intron is spliced. This allows a complete translation of spliced XBP1 mRNA into a functional protein that acts as a transcription factor. Together with the other pathways, the UPR leads to a decrease in the protein folding load by causing a reduction in the general level of protein translation, and by inducing the expression of protein folding machinery. However, if the UPR is activated continuously for a long time, the apoptotic pathway will be triggered, and the cell will die. ER stress and UPR are associated with various disorders, such as some types of cancer, diabetes, chronic inflammatory syndromes, and particularly neurodegeneration. For example, in Parkinson’s disease, it was suggested that prolonged ER stress induces the extensive apoptosis of dopaminergic neurons in substantia nigra pars compacta region of the midbrain. This hinders the normal functioning of the nigrostriatal pathway, and hence results in the progressive development of Parkinson’s motor symptoms. In order to study the regulation or IRE1 branch of the UPR, and to identify the ER-stress-modulating compounds, a human luciferase reporter cell line (XBP1-NLuc) was created in this work. The reporter was expressed when IRE1 splicing was activated, since the XBP1 intron fragment was fused to the Nano luciferase gene. The expression of the reporter was observed with luciferase assay at several time points during treatments. The treatments were done with ER stress inducers thapsigargin and tunicamycin, and with IRE1 inhibitors KIRA6 and 4μ8c, or the combination of those. Quantitative PCR (qPCR) was used to validate the expression of the reporter and to monitor the expression of the other branches of the UPR. Additionally, the oligomerization of IRE1 was observed with IRE1-GFP cell line that was treated identically to the XBP1-NLuc cell line, fixed, stained for nuclei, and imaged with fluorescent microscopy. After imaging, the IRE1-GFP clusters were analysed and quantified with CellProfiller and CellAnalyst softwares. Both cell lines were used to test the effect of neurotrophic factors CDNF, MANF, and MANF mutant isomers on the UPR with and without tunicamycin treatment. Collectively, the experiments confirmed that XBP1-NLuc cell line was created successfully and that it accurately reports IRE1 splicing activity. As expected, ER stress treatment increased the reporter expression, while IRE1 inhibitors decreased the expression of the reporter. qPCR revealed that the other observed UPR markers were activated as well upon thapsigargin treatment, however, they were not decreased with the treatment with IRE1 specific inhibitors. In line with XBP1-NLuc cell line, the IRE1-GFP cell line demonstrated an increased oligomerization of IRE1 upon ER stress induction. The KIRA6 inhibitor of IRE1, which prevents IRE1 oligomerization, decreased the formation of IRE1-GFP clusters. Additionally, the IRE1-endonuclease-activity inhibitor 4μ8c induced the formation of IRE1-GFP clusters. Curiously, the distribution of the intensity of IRE1-GFP clusters was bimodal and could point to two manners of IRE1 clustering and/or activation. Together, the experiments done with cells transfected with CDNF, MANF or MANF mutants, suggested that the tested neurotrophic factors decreased IRE1 oligomerization and its activation. However, there were substantial problems in the quantification of viable cells, which should be considered in the interpretation of these results. No significant difference among the tested neurotrophic factors was observed. In conclusion, the XBP1-NLuc reporter cell line provided a reliable reporter of IRE1 endonuclease activity, whose expression is increased during the ER stress. Together with IRE1-GFP cell line, it revealed the amount of IRE1 oligomerization and activation under various treatments and at different time points relative to treatments. Due to the effectiveness and accuracy, the XBP1-NLuc cell line can be further used in studying the regulation and activation of IRE1, as well as for the identification of ER-stress modulating molecules, which can be used for development of novel treatments for ER stress associated diseases, such as Parkinson’s disease.
-
(2021)Parkinson’s disease (PD) is the second most common neurogenerative disease. There are no drugs available to halt the progression of PD. The glial cell line-derived neurotrophic factor (GDNF) has been identified as a potential drug candidate against PD because of its protective properties on dopaminergic neurons, which are an especially vulnerable cell population in PD. It has been recently shown that GDNF can also attenuate aggregation of phosphorylated α-synuclein in dopaminergic neurons, which is one of the most important pathologies of PD. Phosphorylated α-synuclein is a primary component of Lewy bodies, which in turn, are vastly studied intracellular inclusions with a high correlation towards neurodegenerative diseases. GDNF signals through its main receptor RET and activates downstream signalling cascades. RET is indispensable for the effect of GDNF against α-synuclein aggregation. Importance of the downstream molecules Src, AKT and PI3K have been also pharmacologically demonstrated. However, complete mechanism of GNDF’s action and individual importance of downstream signalling molecules has been yet to establish. CRISPR/Cas9 gene editing tool has revolutionized the gene manipulation in biological research. In this thesis work, CRISPR/Cas9 guides were designed to target and mutate the c-Src, Akt1 and NURR1, which are important proteins of the GDNF/RET pathway. As a delivery system for the Cas9 enzyme and individual guides, lentiviral vectors were produced according to the protocols previously established in our laboratory and proved to be high efficiency. Modelling of α-synuclein aggregation in neurons was performed with pre-formed fibrils of α-synuclein, which induce the formation of intracellular Lewy body-like inclusions with the phosphorylation of α-synuclein at serine 129. In this study, primary dopaminergic neuron cultures from E13.5 mouse embryos were cultured in 96-well plates. For each of the target genes, I designed two guide variants, cloned them in lentiviral transfer vectors and produced lentiviral particles for neuronal transduction. My data shows that targeting Akt1 and c-Src impaired the protective mechanism of GDNF against Lewy body-like inclusions. For the importance of NURR1 more studies are needed for coherent conclusions. I also showed that targeting of NURR1 impaired the GDNF/RET signalling at least in one guide construct. The 15-day long cultivation did not affect to the dopaminergic cell numbers in any of the groups. Still the confirmation of successful CRISPR-induced genetic mutations by sequencing as well as the detailed mechanism of how GDNF prevents the formation of Lewy body-like inclusions will be a subject of future studies. This thesis provides important information for the molecular mechanism of attenuation of α-synuclein aggregation by GDNF through its main receptor RET.
-
(2018)As a genome editing tool, CRISPR-Cas9 has provided a robust way to generate mutations in the gene of interest, at a certain time point, and in selected cell populations. The impairment of dopaminergic neurons in the substantia nigra is addressed to be one of the main pathologies of Parkinson’s disease. The histopathology of Lewy Bodies, with an undetermined role, accompanies the demise of DA neurons. Development of strategies for the prevention the neurodegeneration has a potential to slow down the progression of Parkinson’s disease. In this study, a novel, neuron-specific CRISPR-Cas9 system was developed for the purpose of dissecting neuroprotective pathways in primary dopaminergic neurons. The optimization of the tool was done by targeting EGFP at TH-positive neurons obtained from transgenic animals expressing EGFP in dopaminergic neurons. Complete loss of EGFP was achieved at day 6 after the introduction of the CRISPR-Cas9 via lentiviral vectors. There were no survival or transduction efficiency differences. Two significant pathways for the survival of dopaminergic neurons, the microRNA biogenesis and GDNF/RET signaling were selected to collect the preliminary data. Dicer, Trbp, Translin, Ago-2 and Ret were targeted with single sgRNAs, which were specifically designed to create indel mutations in these genes, and specific lentivirus vectors were produced with each guide. After transduction with the lentivirus vectors, survival of the TH-positive neurons was unaffected. Data obtained from the quantitative PCR suggested that there was 50-70% decline in transcript levels of Trbp. However, the unchanged transcript levels of the other miRNA-related targets suggest the need for further optimization of the specific guides. Knockdown of Ret was validated by inhibition of pharmacological benefits of GDNF. Overall, this research has shown the further development of this CRISPR-Cas9 tool would be useful to dissect neuroprotective signaling pathways in dopaminergic neurons.
-
(2022)Parkinsonin tauti on maailman yleisin hermorappeumaa aiheuttava liikehäiriösairaus. Taudin ilmaantuvuus- ja esiintyvyysluvut ovat jatkuvassa nousussa, mitä väestön ikääntyminen ei yksin selitä. Taudin patologisia löydöksiä ovat alfasynukleiinin kertyminen ja vääränlaisesta laskostumisesta johtuva aggregaatio, Lewy neuriittien ja kappaleiden kertyminen sekä dopaminergisten hermosolujen solukato mustatumakkeesta. Taudin pidemmälle edenneille vaiheille on tyypillistä vaikea toimintakyvyttömyys ja elinajanodotteen lasku. Nykyiset hoitomuodot niin Parkinsonin taudille, kuin muillekin hermorappeumasairauksille ovat ainoastaan oireita lievittäviä. Onnistuneeseen lääkekehitykseen vaaditaan parannusta eläinmallien validiteetin jokaisella alatasolla. Parkinsonin taudin käytössä olevissa prekliinisissä eläinmalleissa on huono ilmivaliditeetti monien potilailla tehtyjen patologisten löydösten puuttuessa. Tässä tutkielmassa esitän uudenlaisen SynFib rottamallin Parkinsonin tautiin. Eksogeenisesti valmistettuja ihmisen alfasynukleiinifibrillejä injisoitiin yhdessä alfasynukleiinia ekspressoivien virusvektoreiden kanssa mustatumakkeeseen. Injektio aiheutti intensiivisen ja etenevän alfasynukleiinista johtuvan patologian ja merkittävän dopaminergisen soluvaurion. Taudin etenemistä seurattiin pitkittäistutkimuksessa positroniemissiotomografialla ja toiminnallisia puutteita arvioitiin synapsitiheydessä, inflammaatiossa ja dopaminergisessa järjestelmässä 16 viikon ajan. Havaitsin aivokudoksen tulehduksen ja dopaminergisen ipsilateraalisen soluvaurion lisääntyneen merkittävästi. Kahden viikon kohdalla synapsitiheys oli merkittävästi vähentynyt ipsilateraalisesti ja taudin leviäminen kontralateraaliselle puolelle oli alkanut.
Now showing items 1-5 of 5