Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "RNA sequencing"

Sort by: Order: Results:

  • Korkiakoski, Satu (2024)
    The RNA splicing process is an important part of gene expression in which the introns are removed from the pre-mRNA so that the mature mRNA only contains protein coding exons. The splicing process is executed by the spliceosome in two subsequent transesterification reactions that occur partly co-transcriptionally. In the first step an intron lariat is formed between the exons. This is followed by splicing of the intron lariat and ligating the exons together. Genetic variants that affect the splicing of a particular gene are called splicing variants and they may disrupt the normal splicing process. Splicing variants can be both exonic or intronic and have effects on splice site recognition, activate cryptic splice sites or create new splice sites. These changes can lead to for example exon skipping or intron retention in the transcript. Diagnosing splicing variants is challenging because of the unknown functional effects of the variants. Splicing prediction tools can help predict the possible effects of variants. Different sequencing methods enable the detection of aberrant splicing transcripts and thus may help in variant interpretation. The aim of this master’s thesis was to develop a detection method suitable for the diagnostic laboratory for RNA splicing variants in congenital disorders. The methods that were tested included RNA and Sanger sequencing. First, the patient selection was performed using splicing predictions and previous research on the variants. Secondly, after receiving patient samples, RNA was extracted, and its integrity measured. The laboratory work was then divided into two parts, the other leading to the RNA sequencing and the other to Sanger sequencing. Before Sanger sequencing primer design, RT-PCR, PCR and analysis of the PCR fragment sizes was performed. RNA sequencing was preceded by RNA library preparation. The studied variants in this thesis were BRCA2 c.476-3C>A, MSH2 c.2005+3A>T and CYLD c.2350+5G>A. The PCR fragment analysis and Sanger sequencing was able to detect an aberrant splicing transcript with exon skipping on two patients caused by a variant in the CYLD gene. The RNA sequencing results confirmed the aberrant splicing transcript. In addition, fragment analysis showed evidence of a possible splicing isoform with skipping of two exons caused by a variant in the BRCA2 gene that was not expressed enough to show on the Sanger sequencing results. The RNA sequencing detected a splicing transcript with exon skipping in two BRCA2 patients. However, this was not the same transcript as interpreted from the fragment analysis results and no results in the RNA sequencing indicated a transcript with skipping of two exons.
  • Talka, Markus (2022)
    Acute leukemia is a life-threatening disease of blood and bone marrow, which is caused by malignant transformation of immature white blood cells. These malignant white blood cells invade space in bone marrow decreasing its ability to produce normal blood cells, eventually leading to death within weeks after the diagnosis without treatment. The acute leukemia can be broadly divided into its lymphoblastic and myeloid form, based on the affected cell lineage. Furthermore, acute leukemias can be classified based on different genomic features, such as gene fusions. Fusion genes are strong drivers in various cancers such as acute leukemias, and they are formed when two or more original genes join together forming a novel hybrid gene. If the novel hybrid gene is transcribed, it can lead to a translation of an abnormal fusion protein with altered function. The detection of the gene fusions is very important, since it affects to diagnosis and treatment of the patient. Various techniques can be used for fusion gene detection, of which the RNA sequencing is the method of choice, due to its ability to provide an unbiased identification of all known and novel gene fusions from the sample in a single experiment. In this thesis, the overarching aim was to develop an optimal sampling protocol for fusion gene detection using RNA sequencing for acute leukemia diagnostics. First, the whole blood samples in EDTA-tubes were collected from acute leukemia patients based on the findings from routine diagnostics. Next, the RNA was extracted at three different timepoints (0h, 8h, and 32h). The samples were stored at 4°C between the extractions. Finally, the RNA sequencing libraries were constructed, and the RNA sequencing was performed. After the sequencing, the data was analyzed using the FusionCatcher algorithm for fusion gene detection and the EdgeR-package for differential expression analysis. The FusionCatcher detected the same gene fusion in all the four fusion gene positive patients compared to routine diagnostics. However, the FusionCatcher failed to recognize the gene fusion in some of the samples with very low number of fusion breakpoint-spanning reads. These reads were visualized with IGV, suggesting that the detection failure resulted from the very low number of break-point-spanning reads. Furthermore, the sample storage did not affect on gene fusion detection. In addition, FusionCatcher detected PIK3AP::BLNK gene fusion from one of the fusion gene negative patients, suggesting a possibility that the patient truly was fusion gene positive. The differential expression analysis revealed changes in gene expression between the different timepoints. The results showed changes in various pathways related for example to cell death and protein biosynthesis, but also to pathways related to cancer. The results showed that prolonged sample storage alters the gene expression profile thus affecting the results of a gene expression study.
  • Ikonen, Ina Kristiina (2023)
    Biallelic germline mutations in ERCC6L2 cause bone marrow failure (BMF) and predisposition to myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). The patients often develop varying cytopenias, and underlying hypoplasia in the bone marrow is usually evident. The aim of this thesis was to characterize the transcriptome of patient -derived fibroblasts with biallelic germline ERCC6L2 mutation. Moreover, the aim was to study changes on the gene expression at the RNA level in fibroblasts in different media conditions, ROS levels in ERCC6L2 -mutated fibroblasts, and whether addition of glutamine impacts the ROS levels. Fibroblasts from 16 skin biopsies were cultured; eight samples were from healthy controls and eight samples from patients with known mutations in ERCC6L2. Fibroblasts were cultured in different media conditions, followed by RNA extraction and RNA sequencing. We observed downregulation in base excision repair, nucleotide excision repair, mismatch repair, DNA replication, homologous recombination, and cell cycle in ERCC6L2 -mutated cells. MAPK signaling pathway, p53 signaling pathway, apoptosis, AMPK signaling pathway, and TGF-beta signaling pathway were in turn upregulated in ERCC6L2 -mutated cells. The medium did not affect the gene expression significantly across samples. We suspect that the effect of medium was not detected at the RNA level, but it might affect post-translational modifications. We also detected increased ROS levels in ERCC6L2 samples compared to control and observed decreased ROS levels in ERCC6L2 and control samples with excess glutamine. This study shows that biallelic mutations in ERCC6L2 do not only affect the bone marrow but can also affect tissues outside of the hematopoietic system. The transcriptomic analysis identified important biological processes, which could be studied with more detail in the future to further explore the pathology of the ERCC6L2 disease.