Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "RT-qPCR"

Sort by: Order: Results:

  • Nykänen, Sonja (2019)
    Colorectal cancer (CRC) kills more than half a million people a year worldwide. Usually the disease develops over several years via multiple steps which involve both genetic and epigenetic alterations. CRC is often diagnosed at late stage, when the cancer has already metastasized, and the prognosis is relatively poor. Several studies suggest that the first changes towards colorectal cancer occur and can be detected in histologically normal tissue before the appearance of any detectable lesion. The precancerous cells harbouring those changes may form a field of tissue, which is predisposed to malignant transformation. The study of pre-cancerous tissue might reveal the earliest changes in CRC development, which can be used as biomarkers for early detection and prevention of CRC. The aim of this thesis was to revise and investigate whether the aberrant expression of the six chromosomal segregation genes, Bub1, Mis18a, Pms2, Rad9a, Tpx2, and Mlh1, would signal carcinogenesis in mouse colon mucosa. Altogether fourteen mice, of which six had a proximal colon carcinoma, were selected for the study. The expression analysis was performed to histologically normal colon mucosa collected from the proximal and distal colon of each mice in order to investigate whether the possible pre-cancerous changes are found exclusively in the close proximity to the carcinoma. The expression was quantified with reverse transcription quantitative polymerase chain reaction (RTqPCR). No statistically significant gene expression differences were found between the carcinoma and control mice, indicating that the studied mice did not display cancer-preceding expression changes of the six studied genes in the carcinoma adjacent histologically normal colon mucosa. The results differed from the previously reported results, where the expressions of the six genes were found to be downregulated in the carcinoma adjacent mucosa. Here, the sample size was presumably not large enough to reveal statistically significant clustering of the expression patterns. However, Bub1 seemed to have a downregulated trend in the carcinoma adjacent mucosa, which supports the previously suggested role of Bub1 alterations in CRC initiation.
  • Muranen, Sampo (2019)
    Tree shoot architecture research is important due to its significance in fields such as timber production, fruit and nut production and aesthetics of common areas. Also, research on genetic factors that regulate shoot and root system architecture might provide novel methods to store more carbon in forests and, hence, mitigate global warming in the future. LAZY1 is one of the major genes that affects branch and tiller angle in herbaceous and woody species such as Arabidopsis, rice and peach tree. LAZY1 has been under scrutiny over a decade but its molecular function remains unknown. However, it is known that lazy1 mutation affects polar auxin transport. Here it is studied how LAZY1 affects initial branch angle, fiber length and reaction wood development in silver birch (Betula pendula). Also, transcript levels of few shoot architecture related genes were analyzed. LAZY phylogenetic analysis provided evidence of a duplication of LAZY1 in three studied tree species (Betula pendula, Prunus persica, Populus trichocarpa), duplicated genes are here named LAZY1a and LAZY1b. Plant material employed in this study was a segregating population (50:50) of back-cross 1 of weeping birch (B. pendula ´Youngii´) which has a truncated lazy1a. Histological samples of branches were prepared by cryo-sectioning, stained with carbohydrate binding Alcian Blue and lignin binding Safranin dyes to reveal patterns of tension wood development. Due to the large size of branch sections, samples were imaged with a microscope and the images were merged together in a Photoshop application. Branch angles were measured manually with a protractor (angle) tool from stem to the middle of a branch. The data was analyzed using mixed linear models due to the nature of used plant material. We could not use clones because of major issues in in vitro propagation. Branch samples were macerated, fibers imaged and measured by ImageJ software. LAZY1a gene expression levels were analyzed by RT-qPCR method. RNA-sequence analysis indicated that the expression pattern of LAZY1a and LAZY1b is similar in B. pendula. However, one should construct a promoter-reporter line to study with better resolution if their expression is spatially analogous. Initial branch angle was significantly different in wild type compared to lazy1a mutant. For future, one could generate single and double knock out lines of lazy1a/b to study if they have cumulative effect on the branch angle, an important factor in timber quality. Tension wood formation was difficult to quantify with the employed method, due to issues in segregating G-layered tension wood from thick-walled reaction wood. A chemical analysis of cellulose content might provide a more objective method to observe tension wood in branches. RT-qPCR method indicated that LAZY1a transcript levels are higher in wild type compared to mutant. A complementation or knock down experiment would provide sound evidence that lazy1a induces the weeping phenotype. X-ray diffraction method could be employed to study the orientation of cellulose microfibril angle in branches of the wild type vs. mutant. Generation of effective tensional stress requires a cellulose microfibril angle less than 10 and this angle is affected by auxin concentration. It is possible, that this angle is larger in lazy1a due to defect in polar auxin transport.
  • Huusari, Noora (2020)
    Social insects such as ants live in societies and have a strict division of labor between reproductive and worker castes. A colony can consist of even millions of individuals and the number of queens can vary a lot. Populations where each colony comprises just one or few queens are often called kin structured because the relatedness between nestmates is high. Colonies that have lots of queens and the society lives in many connected nests (polydomy) in are referred to as supercolonies. In these colonies relatedness between individuals is low and the workers represent many genetic lineages. Depending on species and the environment where the colony lives societies can behave aggressively towards individuals from other nests to protect their own nest. Ants must be able to recognize members of their own colony from the intruders to be able to protect the nest. Nestmate recognition is a key element in the interaction between nests and species and makes it possible for the workers in the colony to favour their own nestmates in form of care, defence or food acquisition to gain inclusive fitness benefits. To recognise nestmates ants must be able to sense chemical cues. Ants detect these chemical signals through the proteins expressed mainly in their antennas. In this thesis I studied gene expression of genes related to chemosensation in seven Formica species using the RT qPCR method. My study species were kin structured Formica exsecta, F. pratensis and F. fusca and supercolonial F. truncorum, F. pressilabris, F. cinerea and F. aquilonia. My study genes belong to gene families that code for odorant binding proteins (OBP), chemosensory proteins (CSP) and gustatory reseptors (GRT). I want to find out whether the expression of these genes differs between castes, and whether the caste difference varies between kin structured and supercolonial species. Workers have many tasks in the ant colony and to take care of them, they need to have a sophisticated sensory system. For that reason, I expect to find out that the study genes are expressed more in the worker than the queen caste. In addition, I expect the caste difference in gene expression to be higher in the kin structured species than in the supercolonial species. That is because kin structured species behave more aggressively towards intruders and possibly confront intruders more often than the individuals living in supercolonies. Furthermore, in the supercolonies low relatedness between individuals sometimes lead to conflicts inside the nest. For that reason, I suppose queens of the supercolonies express chemosensory genes more than the queens from the kin structured colonies. Overall expression level was the highest for the OBP and the lowest for GRT. The expression level of CSP was in between these extremes. In accordance with my hypothesis gene expression of OBP and CSP was higher in workers in all the study species. GRT expression was worker biased in six of the seven species. Caste difference in expression of chemosensory genes was similar in kin structured and supercolonial species. The expression level varied between species but did not show a pattern depending on the degree of the polygyny. The study revealed that the expression of OBP and CSP is correlated. My results revealed expected worker biased pattern in the expression. The result might be a consequence of better olfactory or taste abilities in the worker caste compared to queens or it may even be consequence of more sophisticated nestmate recognition skills of the workers. This study reveals valuable information about the gene expression of chemosensory genes related to the recognition system in the ants and awakes many new study questions. Chemical sensory system has been studied a lot in the ants, but in the field of expression studies there is still lot to reveal.