Browsing by Subject "Ribosomal RNA"
Now showing items 1-2 of 2
-
(2022)Formation of template switching mutation has previously been proposed as a mechanism of RNA evolution. TSM mechanism may contribute to the creation, maintenance, and modification of the RNA Hairpin. The finding of de novo TSM in RNA sequences will provide evidence for this hypothesis. Ribosomal RNAs (rRNAs) appear in multicopy clusters on different chromosomes and evolve through concerted evolution. To study the properties of de novo TSM and the dynamics of the concerted evolution of rRNA, we developed a computational tool to analyze pairwise differences and the phylogenetic relationship of rRNA genes on different chromosomes. The genome assemblies that are based on traditional short-read sequencing methods have limitations on studying long tandem repeat rDNA, because the reading length is shorter than on the rRNA gene. To overcome this limitation. PacBio Hifi long-read sequencing data for human rRNA 18S and 28S genes were studied. By analyzing the diversity of rRNA genes between individuals and families, single nucleotide mutations, multiple nucleotide insertions, and deletions were identified. As expected, genetic variations in ribosomal genes were detected both within and between individuals. A larger sample size may be required for TSM identification. The finding of this research that related to the dynamics and concerted evolution of human rRNA may contribute to a better understanding of rRNA mutation-related genetic disorders.
-
(2021)Post-transcriptional modifications (PTMs) in RNA are present in all known RNA species and conserved in all kingdoms of life. Transfer RNA (tRNA) has been shown to have numerous conserved modifications, which exemplifies the importance of modifications having impact on the structure of the tRNA and its function as carrier of the amino acids. Ribosomal RNAs (rRNA) are universally modified as well, and modifications are situated at functionally important spots of the ribosome. Given the fact that types and sites of modifications are conserved, it is likely that these modifications have been selected for and that they optimize the ribosomal structure and functions. Stress, such as temperature or infection by a pathogen, is known to change the presence or abundance of modifications in RNA molecules and thereby affect translation efficacy. In line with that, this master’s thesis project sought to gain insight into the dynamics of PTMs in tRNA and rRNA upon oxidative stress, with the goal of utilizing recently optimized UPLC/MS method for identifying modified ribonucleosides. As the specific aim of the thesis was to estimate the change in PTMs in tRNA and rRNA in response to oxidative stress with 0.5 mM and 2 mM hydrogen peroxide H2O2, 3 immediate goals were: (i) to isolate total tRNA from yeast grown in stress conditions, (ii) to isolate rRNA from yeast 80S ribosomes, and (iii) to identify present modifications using mass spectrometry. Yeast was cultured in presence of H2O2 as a stressor in mentioned concentrations, and both treatments considered showed a difference in survival when compared to the control. Rough cell concentration estimates (OD600) did not show the effect of the stressor on cell survival clearly, but when number of viable cells per mL was estimated, it was clear that growth of the stressed yeast cultures was hindered 2 hours after exposure to H2O2 but recovered during the 24 hours. Firstly, using UPLC/MS analysis, 29 modifications were identified in tRNA from control and H2O2 treated yeast. Most identified modifications showed no change in abundance in treatments, which is to be verified with additional replicates. However, distinct dynamics of stress-related change was found for several modifications, revealing additional modifications that may play a role in stress related modificome reprogramming to the previously known signature modifications of oxidative stress. It was expected that recovery of culture growth after 24 hours may be accompanied with modification level recovery. However, that was not demonstrated here as downregulation at 2 hours followed by upregulation at 24 hours was seen for 2-methylthio-N6-methyladenosine, N4-acetylcytidine and 5-methoxycarbonylmethyl-2-thiouridine, and the reverse was shown for N4-methylcytidine. Upregulation in both time points was also shown here for some modifications. Taken together, these results confirm a complex and dynamic control of tRNA modifications in cellular survival responses. Modifications found to be affected by oxidative stress are most frequently located on the wobble position 34 and anticodon loop position 37, so it is expected that changes in their modification levels could directly affect the tRNA function in translation, making them a specific target for future research. Secondly, modifications in rRNA from control yeast cultures were identified, such as expected methylations of all 4 canonical nucleosides. However, further analysis will be needed to confirm the other identified modifications, due to the potential mRNA and tRNA contamination. Optimizing the method for rRNA modifications identifications by acquiring more modified nucleosides specific for the rRNA to use as standards in the analysis, analyzing rRNA types separately and using tandem mass spectrometry would enable getting a deeper understanding of which modifications are present and where they are positioned. Finally, it would enable reliable identification of the signals of novel modifications present in rRNA, such as the tRNA modification 5-carbamoylmethyluridine signal found here. In conclusion, this thesis work lays the foundation to study the evolutionary conserved function of PTM changes during stress as modulators of translation, using the methodological approaches discussed in-depth within the thesis, primarily to confirm the intriguing results found here.
Now showing items 1-2 of 2