Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "VEGFR3"

Sort by: Order: Results:

  • Näsi, Anni (2020)
    Alzheimer’s disease is the most common form of dementia and one of the highest causes of death worldwide. Recent discovery of lymphatic vessels from the dura mater, the outermost meningeal layer covering the central nervous system, has led to reassessment of the role of lymphatic vessels in neuropathological diseases. The meningeal lymphatic vessels drain macromolecules from the cerebrospinal fluid into the deep cervical lymph nodes and their proper function could be crucial for preventing amyloid-beta aggregation into the brain parenchyma. The function of the meningeal lymphatic vessels is still partly unknown. They have been hypothesized to function as an immune cell hub for the brain and dysfunction of the meningeal lymphatic vessels could lead to immune cell changes in the brain parenchyma. In my thesis, the role of the lymphatic vessels in Alzheimer’s disease was investigated by inducing atrophy of the meningeal lymphatic vessels with VEGF-C depletion in an APdE9 mouse model of Alzheimer’s disease. Single cell sequencing was used to identify the cell types present in the dura mater and in the deep cervical lymph nodes of an Alzheimer’s disease mouse model with and without atrophy of the meningeal lymphatic vessels. The amyloid-beta accumulation was immunohistochemically assessed from the brain and the cognitive decline was studied with behavioral tests. The results showed that atrophy of the meningeal lymphatic vessels did not increase the amount of amyloid-beta in the brain or affect the cognitive decline. The single cell sequencing from the meninges provided a more comprehensive cell atlas than has been published before. It was also found that the atrophy of the meningeal lymphatic vessels was associated with changes in the number of immune cells in the dura mater. The biggest changes were in the number of neutrophils and B-cells, which increased. Further studies are needed to evaluate the role of the meningeal lymphatic vessels in Alzheimer’s disease progression, as the results in this thesis were opposite to the results published before.