Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "addiction"

Sort by: Order: Results:

  • Törrönen, Essi (2020)
    4-Methylmethcathinone (Mephedrone) is one of the the most prevalent synthetic cathinones that bears close structural similarity to amphetamines. Like other stimulants, mephedrone is often used with alcohol (ethanol). In animal studies ethanol has been observed to potentiate the neurotoxicity of amphetamine-type stimulants, and same has been observed when mephedrone and alcohol is combined. The long-term effects of mephedrone have still remained largely elusive. The aim of this thesis is to study the effects of mephedrone, methamphetamine, and ethanol on dendritic spine density and morphology in the hippocampus, nucleus accumbens and caudate putamen, and compare the spine densities with changes in brain activation observed in manganese-enhanced magnetic resonance imaging (MEMRI). Dendritic spines are small membranous protrusions on dendrites that act as the post-synaptic sites for most of the excitatory synapses. Amphetamine and methamphetamine have been shown to affect the density and morphology of the spines. The goal of this thesis was to investigate the long-term effect of binge-like (two times a day, four consecutive days) stimulant treatment on dendritic spines using Golgi-stained rat brain sections. The brains of 48 male Wistar rats were imaged using AxioImager Z2 microscope and the number and the size of the spines was analyzed using Reconstruct software. In this thesis no effect on dendritic spines was observed in the hippocampus and nucleus accumbens in animals treated with mephedrone, methamphetamine, ethanol or combination of them. In the caudate putamen significant increase in the total density of dendritic spines and in the density of filopodia-like spines was observed in mephedrone-treated animals. Other treatments showed no observable effect. These results were conflicting with previous studies where amphetamine-type stimulants have been shown to increase the spine density in the nucleus accumbens and the hippocampus and increase the density of branched spines. In the caudate putamen methamphetamine has been observed to decrease the spine density. There was no correlation between spine densities and brain activation observed in MEMRI. To my best knowledge this is the first time when the effect of mephedrone on dendritic spines has been studied. It is possible that the treatment regimen used here was not strong enough to produce marked long-term changes on dendritic spines. It is also possible, that mephedrone is not as neurotoxic as other amphetamine-type stimulants, which may explain why the effects remained limited and conflicting. More research is still required to establish the long-term structural effects of mephedrone.
  • Järvi, Vilja (2019)
    The insular cortex has been implicated in the neurocircuitry underlying alcohol addiction. The role of the insular cortex and its projections in regulating ethanol intake in AA (Alko-Alcohol) rats has been studied using chemogenetic tools. Chemogenetic activation of the anterior agranular insula (aAI) in AA rats through excitatory DREADDs expressed in the aAI has been found to decrease ethanol consumption. The aAI projects to the central nucleus of the amygdala (CeA), another brain region involved in the development of addiction, particularly in the withdrawal/negative affect stage. In the current study, we sought to further investigate the role of the aAI and the CeA in regulating voluntary ethanol consumption in AA rats. First, we characterized the efferent projections of the aAI in AA rats by chemogenetically activating the aAI with DREADDs and then measuring c-Fos expression in various regions of interest throughout the brain. Next, we investigated the role of the aAI --> CeA projection in ethanol intake by chemogenetically activating or inhibiting the aAI --> CeA projection using the dual viral Cre-dependent DREADD approach. We examined the effects of this manipulation on voluntary ethanol consumption in AA rats in a two-bottle choice paradigm. Finally, we examined the roles of CeA D1Rs (dopamine receptors) and 5-HT2ARs (serotonin receptors) in regulating ethanol intake by examining the effects of pharmacological agonism or antagonism of these receptors on voluntary ethanol consumption in AA rats. Our results from the first experiment reveal significant activation of brain regions including the posterior agranular insula, the mediodorsal nucleus of the thalamus, and the posterior piriform cortex following chemogenetic activation of the aAI. The projections from the aAI to these regions are potentially important in the aAI circuitry in AA rats and are therefore of interest in future studies on the role of aAI circuitry in ethanol intake. In the second experiment, we found no significant effects of aAI --> CeA projection activation or inhibition on ethanol consumption in AA rats, indicating that this projection may not be a key component in regulating ethanol intake in these rats. Finally, we found no significant effects of pharmacological D1R antagonism, 5-HT2AR antagonism, or 5-HT2AR agonism in the CeA on ethanol intake in AA rats, although there was a non-significant trend towards a dose-dependent decrease in ethanol consumption with increasing dose of the D1R antagonist. Our results reveal new neural projections that should be investigated in future research on the role of the aAI in regulating ethanol intake. Studies on the neurobiology underlying alcoholism may reveal new pharmacological or anatomical targets for treatments of alcoholism in humans.