Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "adolescents"

Sort by: Order: Results:

  • Vasques Ojeda, Ariel Olivia (2024)
    Faculty: Faculty of Biological and Environmental Sciences Degree programme: Master’s Programme in Neuroscience Study track: Neuroscience track Author: Ariel Olivia Vasques Ojeda Title: The effects of sleep disruption on sleep architecture and microglial morphology Level: Master’s thesis Month and year: May 2024 Number of pages: 50 pages Keywords: Sleep disruption, microglia, frontal cortex, adolescents, older mice, EEG, microglial morphology, hippocampus Supervisor or supervisors: Birgitte Rahbek Kornum, Christine Egebjerg Jensen Where deposited: University of Helsinki library Additional information: Abstract: Although sleep is an essential biological need for all beings, we have yet to understand why exactly it is a crucial aspect of our lives. The loss of sleep is seen as a natural occurrence that increases as we begin to age. The consequences of sleep deprivation are not yet fully understood but have been associated with a range of detrimental effects on comorbid conditions, including reduced quality of life, cognitive impairments, immune suppression, and various other adverse outcomes. The role of microglia in response to sleep deprivation is a discussion that is also yet to be understood, but that can be a pivotal point for future understanding. This master's thesis investigates the impact of sleep deprivation on sleep architecture in aged mice and microglial activation in adolescents. The study aims to understand how sleep disruption affects these age groups, focusing on microglial morphology and overall sleep patterns. Using EEG/EMG recordings, sleep disruption was induced by introducing novel objects for four hours daily at ZT 2-6 over seven days. The study found that older mice experienced a shift in their sleep patterns, with significant changes in NREM and REM sleep occurring during the dark phase, highlighting the influence of the circadian rhythm. In adolescent mice, sleep disruption led to increased morphological changes, suggesting a reduction in microglial activity or an intermediary state of activation. The results underscore the importance of sleep in maintaining neural homeostasis and highlight age-dependent differences in the response to sleep loss. The study discusses the implications of these findings for understanding the neurobiological mechanisms underlying sleep and its disruption, particularly in relation to microglial function and brain health.