Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "bacteraemia"

Sort by: Order: Results:

  • Tommila, Jenni (2021)
    Bacteraemia, the presence of bacteria in the bloodstream, may lead to severe and costly health issues. Sepsis, a serious complication of bacteraemia, is one of the top causes of mortality globally. Early and specific diagnostics as well as fast acting are essential in successful treatment. However, current diagnosis relies mainly on time-consuming blood culturing and clinical symptoms, which are unspecific for the causative agent. With the advanced technology and decreasing cost, state-of-art sequencing-based (Next generation sequencing) methods provide a new way to investigate the bacteria present. Metagenomics, which means sequencing and studying all DNA extracted from a microbial community sample, is widely used, but it only describes the genetic potential of a community and does not differentiate live from dead microbes. Metatranscriptomics, in which essentially all RNA from a sample is sequenced, provides information about expression and activity together with identification of viable bacteria, However, the high amounts of host cells and host RNA complicate the detection of bacterial transcripts from complex host-microbe samples. In this thesis, I investigated solutions for the efficient isolation and enrichment of bacterial RNA from whole blood to be used in sequencing and metatranscriptomics analysis. Firstly, I tested the capability of bacterial cell lysis of two commercial blood sampling tubes with Escherichia coli and Staphylococcus epidermidis suspensions. Both tubes, Tempus and RNAgard, were able to lyse gram-negative E. coli cells and good-quality RNA was extracted in measurable quantities with their respective RNA extraction methods. With Tempus tubes the RNA yield was clearly higher. With gram-positive S. epidermidis, RNA quantities from both extractions were below the measurement limits indicating insufficient lysis and need for further optimization. Secondly, I investigated the depletion of polyadenylated (poly-A) transcripts in order to reduce the host transcripts and thus to enrich the bacterial transcripts prior to costly sequencing step. I evaluated the performance of a previously designed in-house protocol, based on the capture of poly-A -transcripts with oligo-dT -beads, and tested different parameters to see whether the depletion efficiency could be enhanced. Most significantly, the amount of oligo-dT -bead suspension was reduced to half from the original protocol. In-house protocols were also compared to a commercial solution, which they clearly outperformed. Depletion performances were tested with a RT-qPCR and dot blot assay, which I designed along this thesis work. Finally, to make the poly-A depletion better suited for blood samples infested with globin transcripts (representing up to 80% of all poly-A transcripts extracted from whole blood), I tested and successfully pipelined the leading commercial method for depleting globin transcripts with the in-house poly-A depletion protocol. The optimized sample preparation protocol provides a platform for further bloodstream infection and sepsis studies. Next steps of the process, such as sequencing and testing with clinical samples, are already ongoing with promising preliminary results. In the future, the metatranscriptomics approach can be utilized in fast and specific identification of the pathogens and their antibiotic susceptibilities. In addition, infection mechanisms and host-pathogen interactions may be studied possibly providing novel insights for sepsis diagnostics and treatment.