Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "brain shape"

Sort by: Order: Results:

  • Aalto, Ida-Maria (2021)
    The general structure of the vertebrate brain is highly conserved. However, a large amount of variation exists in brain size and shape, both regarding the whole brain and its subdivisions. This variation is caused by selection acting on species’ behavioural traits and shaping the evolution of the brain in the same process. It is known that one of the factors affecting vertebrate brain morphology is ecology, including habitat complexity, activity patterns and diet. The effects of diet on brain size have been studied in primates, bats and small mammals, where frugivory in primates and bats and insectivory in small mammals, are linked to larger brains. The effect of diet on brain morphology has not been studied in squamate reptiles (lizards and snakes) and the ecological factors behind size and shape variation are largely unknown in squamates compared to other vertebrates. Squamates show large diversity in diet preference as well as feeding behaviour in general, which makes them a suitable model organism to study brain evolution. Further, squamates have highly developed nasal chemical senses that are important for feeding behaviour. These factors in mind, it would be expected that diet has an effect on squamate brain morphology, and especially the brain regions important for feeding behaviour, such as the olfactory bulbs in the forebrain. To study the effects of diet on squamate brain size and shape, the brains of 51 squamate species were micro-CT scanned and 3D-brain surfaces were generated for each species. The species were categorized into four diet groups: carnivorous, herbivorous, omnivorous and insectivorous. To analyse shape and size change across species and diet groups, 73 landmarks were placed on each 3D-brain surface, covering all brain regions: olfactory bulbs, cerebral hemispheres, telencephalon, diencephalon, midbrain, cerebellum and hindbrain. The results from this study show that diet affects significantly the shape of the whole squamate brain, as well as the size of the telencephalon. Telencephalon size differed significantly between the herbivorous and carnivorous groups. Diet had no significant effect on the other brain subdivisions studied here, including the olfactory bulbs. Diet is a large part of a species’ ecology and it is very complex behaviour involving several senses and brain regions, which could explain the results obtained from this study. The results from this study are preliminary, but they indicate that diet could be one of the factors affecting brain morphology in squamates. In the future, including other factors of feeding behaviour than food choice and analysing the effects of diet on a deeper level, such as including brain regions within the brain and analysing cellular organization, could shed some new light on how diet affects squamate brain morphology.