Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "climate change mitigation"

Sort by: Order: Results:

  • Kuvaja, Karla (2023)
    Enhancement of soil carbon sink has large potential to mitigate climate change. Earlier studies have suggested that improved management practices could promote climate change mitigation and improve soil fertility. To find out if the carbon sink of a clay soil under improved grassland management in Southern Finland can be enhanced by increasing mowing height at harvest, an experiment was set up with two different mowing heights (6 and 15 cm). Net ecosystem carbon exchange, based on total ecosystem respiration and photosynthetic capacity were monitored with chamber methods during three growing seasons from 2019 to 2021. Also, plant biomass, leaf area index, soil temperature, soil pH, soil water retention capacity, and soil grain size distribution were studied at both mowing height treatments. In this study, negative value is the CO2 flux from the atmosphere to the ecosystem and positive value is the CO2 flux from the ecosystem to the atmosphere. Negative NEE means that the ecosystem gains C when the absolute value of GPP is greater than TER and vice versa. The higher mowing height increased CO2 uptake by plants and caused more negative NEE for the higher mowing height after the grass was harvested. These results indicate that higher mowing height might be better for mitigating climate change. However, mowing height did not have a significant effect on biomass, LAI, TER or soil properties in the experiment. Short lasting and non-existent differences between mowing heights are probably explained by more pronounced compensation growth reaction at the lower mowing height as growth conditions were otherwise similar except for mowing height treatment at both treatments. More frequent measurements, especially after the harvest, could better reveal the dynamics of grass height differences and its effects on GHGs. Better detection of the effect of mowing height on the carbon balance would require even more regular and continuous measurements after harvesting and fertilization in different soil types with experimental setups such as applied in this study.
  • Vilhonen, Enni (2021)
    Improving land management to mitigate climate change is important, especially in agriculture on soils with high organic content. Many studies have found evidence that increasing diversity can help to improve plant biomass production and soil carbon storage. This is attributed to complementarity which consists of more efficient resource use due to niche differences and facilitative interactions. For the total climate impact, the effect of greenhouse gas emissions from the soil needs to be considered. To find out if adding more species to a grass mixture could have similar benefits in boreal zone grass cultivation in Finland, an experiment was set up with four different species mixtures, and three levels of species richness were established under a nurse crop. It was additionally of interest if these effects can counter the emissions of cultivation on organic soils. Biomass samples were collected both before the nurse crop was removed and at the end of the growing season. Both species richness and Shannon diversity index were considered as explanatory factors. Carbon exchange, divided into respiration and photosynthetic capacity, as well as nitrous oxide and methane fluxes, were monitored monthly. There was no strong evidence that species richness affects biomass or greenhouse gas fluxes during the first year. The effect of species richness on the biomass was clearer when the diversity index was considered. These results were significant when the lowest biomass values were excluded from the analysis, probably because complementary resource use needs enough biomass to have an effect. The differences in carbon flux measurements may be sensitive to timing within the growing season since the results closest to significant were obtained at the start of the season. At the time, the measurement conditions were good and the nurse crop biomass was small enough not to obscure the effects of grass mixture. When it comes to other greenhouse gases, species richness had most impact on early nitrous oxide emissions, while methane flux probably needs significantly more time for any changes to appear. Overall, the effect of species richness needs to be studied over the full grass cultivation cycle to find out the full effect. Based on current results, increasing species richness may be an option when other methods cannot be used to reduce emissions and improve carbon sink of agriculture.