Browsing by Subject "ecophysiology"
Now showing items 1-2 of 2
-
(2022)Woodland strawberry (Fragaria vesca) is a perennial herb in the Rosaceae family with dimorphic leaves, summer and winter leaves, adapted to seasonal climate. Woodland strawberry produces a new set of leaves in spring that are photosynthetically active throughout the summer season (summer leaves), and the leaves senescence in autumn when they are replaced by a new set of leaves (winter leaves). The winter leaves retain photosynthetic capacity under the snow cover throughout the winter season, which prolong the photosynthetic period of the species. With the world-wide climate warming, the thickness of winter snow is decreasing, which can affect overwintering and spring phenology of plants. This thesis focuses on springtime ecophysiology and phenology of the senescing winter leaves and the formation of new summer leaves of woodland strawberry genotypes of different European origin. The 15 different genotypes of woodland strawberry are from Iceland, Italy and Norway, and they originate from different environments that are geographically separated from each other, so the populations are genetically distinct. In this study, these genotypes were kept at two different overwintering sites, coastal site at the Åland islands with mild temperatures, and continental site in Lammi with a persistent snow cover. According to the results all 15 genotypes showed earlier development of the summer leaves and earlier senescence of winter leaves in the group with Åland as overwintering site than in the group with Lammi. Another important finding is that the first summer leaves produced in spring begun to senesce shortly after they are fully developed and were replaced by later formed summer leaves. Specifically, the dates of summer leaf formation, flowering and stolon production were advanced, and the dates of winter leaf senescence were also advanced. The value of different leaf types to chlorophyll fluorescence was also lower at the Åland site. Therefore, it can be concluded that overwintering conditions have an effect on the subsequent phenological development in spring. In the context of global climate change, the spring development of woodland strawberry will be earlier, and the senescence of winter leaves will also be earlier.
-
(2020)Ecophysiology and ecology in plants are strongly affected by the conditions surrounding them. Adaptation aids plants to survive and to succeed in the prevailing conditions. Winter is a challenge to plants, particularly in northern latitudes and higher altitudes, because it exposes plants to cold and drought, for example. Plants survive from winter on species level with the help of genetic adaptations and as individuals also with the help of acclimation. Woodland strawberry (Fragaria vesca) has been observed to grow separate winter leaves. This allows it to continue photosynthesis in mild conditions during winter, thus improving its energy balance, and to start growing earlier than other species in the spring, which is beneficial in interspecific competition. Fragaria vesca is a species that has wide distribution in the northern hemisphere, and its genotypes are found from very different locations and conditions. However, adaptive traits such as producing a new set of leaves for winter can turn out to be a disadvantage if environmental conditions change rapidly. Climate change brings about changes that are difficult to predict, and these changes are advancing at a fast pace when compared to the developmental history of plants. The aim of this thesis was to study the effect of temperature on summer and winter leaf development, stolon formation and summer and winter leaf chlorophyll, flavonol and anthocyanin content in different Fragaria vesca genotypes. Leaf chlorophyll and secondary compound content give information about leaf development and stress reactions in plants. Plants are known to produce anthocyanins in order to protect the photosynthetic apparatus during chlorophyll recovery in leaf senescence. Anthocyanins are also produced as a response to low temperatures. Research increases knowledge of the ecophysiological and winter ecology-related processes in Fragaria vesca and in the commercially valuable Rosacea-family as well as provides information about the possible responses of these organisms to climate change. Material for the study consisted of twelve European Fragaria vesca genotypes, which had originally been collected from five countries: Norway, Finland, Germany, Italy and Spain. The genotypes had been collected from different latitudes, and they also expressed altitudinal differences. In this study, these genotypes were kept in two temperature treatments, warm (+16°C) and cold (+11°C/six weeks, after which +6°C/four weeks) at a greenhouse. Leaf development was studied by measuring summer and winter leaf middle leaflet width and length, and petiole length. Stolons from each plant individual were counted on a weekly basis and observations about stolon production in relation to the timing of summer leaf senescence and winter leaf development were made at the same time. Leaf chlorophyll and secondary compound content was measured with a Dualex-meter, which provided values for chlorophyll, flavonol and anthocyanin content. The underlying assumption was that cold temperature would induce winter leaf development and summer leaf senescence. The results show that there were differences in summer leaf size between genotypes. Winter leaves had differences between genotypes, but also within genotypes at different temperature treatments. Stolon count was lower and stolon production ceased slightly earlier in the cold treatment. Moreover, summer leaf chlorophyll content decreased in both treatments, but the summer leaves senesced earlier in the warm room. Summer leaf flavonol and anthocyanin values were generally higher in the cooler temperature treatment. Anthocyanins were also produced by winter leaves in the cooler temperature treatment. Based on the results, Fragaria vesca genotypes had differences related to their origin, but temperature also had an effect on winter leaf development, stolon production and the production of secondary compounds. The effect of cold temperature on the size of developing winter leaves was clear. In the cooler temperature treatment, the winter leaves were smaller than in the warmer treatment. The anthocyanin content of summer leaves was higher than in the winter leaves, and the summer leaf anthocyanin content was higher in the colder temperature treatment, where the stress related to the photosynthetic apparatus and low temperatures was combined. Nevertheless, lower temperature did not explain all the responses observed in the genotypes of the study, and thus it is likely that acclimation and winter leaf development in Fragaria vesca are affected by some other factor in addition to temperature, e.g. light regime. A possible continuation for this work would be to study the effect of light conditions or milder winters on winter leaf development in Fragaria vesca genotypes and on the physiology of the species.
Now showing items 1-2 of 2