Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "food web"

Sort by: Order: Results:

  • Kangas, Jonna (2022)
    Climate change is expected to cause salinity change in the Baltic Sea and therefore may affect organisms living in the Baltic such as plankton. The microbial loop is an important part of the plankton food web. It consists of heterotrophic bacteria, nanoflagellates and ciliates and is connected with the classic plankton food chain through interactions with primary producers and mesozooplankton. Therefore, salinity affects the functioning of the microbial food web not only directly, but also through salinity induced changes on primary producers and mesozooplankton. In this master’s thesis I studied the effects of salinity change on microbial loop components bacteria, nanoflagellates and ciliates in an outdoor mesocosm experiment containing four salinity treatments with salinities of 3.5, 5.5, 7.5 and 9.5, three replicas each. The experiment took place offshore at the Tvärminne Zoological Station. Bacteria were sampled from the mesocosms every other day and nanoflagellates and ciliates every 6th day. Bacteria were analysed with the flow cytometer, nanoflagellates with epifluorescent microscopy and ciliates using an inverted microscope. The effects of salinity on microbial loop components were statistically tested using linear mixed effects models. Results of the experiment show that salinity had an indirect effect on microbial loop components through changes in mesozooplankton composition. There were significant differences between high and low salinity treatments in bacteria abundance and composition, the interaction strength between HNFs and bacteria and in the mean cell size of ciliate communities. These were mainly caused by differences in mesozooplankton community structure between salinity treatments, which had cascading effects on the strength of top-down and bottom-up control on the trophic levels of the microbial loop, leading to changes in bacteria abundances and composition. Based on the results of this thesis, more studies are needed to detect the effects that changes in the composition and functioning of the microbial loop might have on the ecosystem. Further research should also focus on the significance of the structure and diversity of the communities within the microbial loop as well as the functional roles of different species in the microbial food web.
  • Mattila, Bernd-Niklas (2020)
    Cladocerans play a key role in the aquatic ecosystem. They are abundant in lakes and are an essential part in the carbon and energy transfer of the food webs. These species are, however, prone to various environmental changes. Estimates have shown that dissolved organic carbon (DOC) concentrations in northern lakes are likely to increase in the future. This increase of DOC in lakes has multiple impacts ranging from nutrient levels to shading impacts reducing primary productions. Investigating changes in cladocerans along a DOC gradient could help us understand how these species might develop in the future in our changing climate. In this Master’s Thesis, I studied how the cladoceran body length and community structure varied between 9 lakes with dissolved organic carbon (DOC) concentration ranging from 2.4-33.5 mg l-1. For the analyses, these lakes where divided into two groups with a threshold of 12 mg l-1 or into groups of three based on their DOC concentrations. Then, the results were compared with cladoceran length data from an earlier study. Additionally, the changes in phytoplankton abundances and communities as well as the relation between DOC concentration and other environmental variables were analysed. The results showed an increase in the cladoceran body length above the DOC threshold. Moreover, the changes in body length varied between the studied genera. Both Ceriodaphnia sp. and Diaphanosoma sp. body length decreased in groups with higher DOC concentrations while Bosmina sp. were larger at high DOC concentrations. DOC concentration did not have any significant effect on the community structure of zooplankton. The studied lakes varied from their environmental condition making comparisons and general statements challenging. The results indicated that DOC concentration regulates the planktonic communities, but it is solely an imprecise predictor for changes in zooplankton communities. However, cladoceran densities seemed to benefit from increased DOC concentrations as nutrient levels also increased. Changes in cladoceran body lengths were challenging to interpret, because there are multiple factors that can have an impact both alone and combined with others.