Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "geenien ilmentyminen"

Sort by: Order: Results:

  • Taskinen, Juuso (2019)
    Human umbilical vein endothelial cells are responsible for maintaining and forming new vessels from existing ones, in a biological process called sprouting angiogenesis. Sprouting angiogenesis is a crucial mechanism for the resolution of hypoxia and normal development of tissues. It also plays a key role in internal plague hemorrhages, which can lead to embolisms and other cardiovascular complications. Angiogenesis is also crucial for cancer development. Sprouting angiogenesis is initiated by hypoxic tissue excreted vascular endothelial growth factor gradient, which induces normal endothelial cells into either a proliferative stalk cell or a signal sensing tip cell phenotype. Both of these cell types depend on the rapid flow of lipids to their plasma membrane, either to form plasma membrane protrusions in tip cells or as new plasma membrane material in dividing stalk cells. This flow is envisioned to involve both vesicle-mediated and non-vesicular mechanisms. A major non-vesicular route of lipid transfer occurs at membrane contact sites via lipid transport proteins. Furthermore, lipids can be transported to the plasma membrane by the direct fusion of vesicles or endosomes with the plasma membrane This thesis set out to explore the role of two membrane contact site proteins, oxysterol-binding protein- related protein 2 and protrudin, in angiogenesis and lipid transfer. Their role was examined by RNA-sequencing transient knock-down samples of these proteins in HUVECs. The RNA-sequencing data was examined by differential expression, gene ontology overrepresentation and gene set enrichment analyses. Gene expression analysis provided almost 10 000 significantly changed transcripts (adjusted p-values < 0.05), in each silenced cell type. The distribution of differentially expressed genes in oxysterol-binding protein- related protein 2 silenced cells, is skewed toward negative fold changes, whereas the distribution of differentially expressed genes in protrudin silenced samples is normally distributed. The results also show significant changes in gene ontologies related to proliferation, cell cycle, angiogenesis as well as hypoxia in both sample types. Gene set enrichment analysis showed upregulation in angiogenesis related pathways, such as the PI3K-Akt and MAPK pathways, in both samples. Significant downregulation was present in cell cycle related pathways and cholesterol biosynthesis pathway in both ORP2 and protrudin silenced samples.
  • Huusari, Noora (2020)
    Social insects such as ants live in societies and have a strict division of labor between reproductive and worker castes. A colony can consist of even millions of individuals and the number of queens can vary a lot. Populations where each colony comprises just one or few queens are often called kin structured because the relatedness between nestmates is high. Colonies that have lots of queens and the society lives in many connected nests (polydomy) in are referred to as supercolonies. In these colonies relatedness between individuals is low and the workers represent many genetic lineages. Depending on species and the environment where the colony lives societies can behave aggressively towards individuals from other nests to protect their own nest. Ants must be able to recognize members of their own colony from the intruders to be able to protect the nest. Nestmate recognition is a key element in the interaction between nests and species and makes it possible for the workers in the colony to favour their own nestmates in form of care, defence or food acquisition to gain inclusive fitness benefits. To recognise nestmates ants must be able to sense chemical cues. Ants detect these chemical signals through the proteins expressed mainly in their antennas. In this thesis I studied gene expression of genes related to chemosensation in seven Formica species using the RT qPCR method. My study species were kin structured Formica exsecta, F. pratensis and F. fusca and supercolonial F. truncorum, F. pressilabris, F. cinerea and F. aquilonia. My study genes belong to gene families that code for odorant binding proteins (OBP), chemosensory proteins (CSP) and gustatory reseptors (GRT). I want to find out whether the expression of these genes differs between castes, and whether the caste difference varies between kin structured and supercolonial species. Workers have many tasks in the ant colony and to take care of them, they need to have a sophisticated sensory system. For that reason, I expect to find out that the study genes are expressed more in the worker than the queen caste. In addition, I expect the caste difference in gene expression to be higher in the kin structured species than in the supercolonial species. That is because kin structured species behave more aggressively towards intruders and possibly confront intruders more often than the individuals living in supercolonies. Furthermore, in the supercolonies low relatedness between individuals sometimes lead to conflicts inside the nest. For that reason, I suppose queens of the supercolonies express chemosensory genes more than the queens from the kin structured colonies. Overall expression level was the highest for the OBP and the lowest for GRT. The expression level of CSP was in between these extremes. In accordance with my hypothesis gene expression of OBP and CSP was higher in workers in all the study species. GRT expression was worker biased in six of the seven species. Caste difference in expression of chemosensory genes was similar in kin structured and supercolonial species. The expression level varied between species but did not show a pattern depending on the degree of the polygyny. The study revealed that the expression of OBP and CSP is correlated. My results revealed expected worker biased pattern in the expression. The result might be a consequence of better olfactory or taste abilities in the worker caste compared to queens or it may even be consequence of more sophisticated nestmate recognition skills of the workers. This study reveals valuable information about the gene expression of chemosensory genes related to the recognition system in the ants and awakes many new study questions. Chemical sensory system has been studied a lot in the ants, but in the field of expression studies there is still lot to reveal.