Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "ihmisen vaikutus"

Sort by: Order: Results:

  • Aro, Niilo (2022)
    With the growth and concentration of urban areas, methods for minimizing the impacts of fragmentation and habitat loss on biodiversity are needed. Spatial Conservation Prioritization (SCP) methods, which holistically assess the connectivity of urban areas, provide an effective tool for prioritizing conservation efforts, but producing these analyses require large amounts of high-quality data on e.g., the spatial distribution of biodiversity features in the area. An index-based approach is a simpler way to evaluate the ecological quality of single corridors, and could be a cheaper alternative to SCP methods, especially in cases where prior environmental data is limited or there is a frequent need for new analyses. In this study, I created an index-based method to evaluate the ecological quality and functionality of wildlife corridors. The three-step approach included a literature review on factors affecting the functionality of wildlife corridors as well as the building and testing of the index. The main objective in creating the index was to provide a tool that is easy to use and interpret, and that could be used in decision-making to minimize human impact on nature. The index is based on scientific literature and provides information on the ecological functionality of wildlife corridors in facilitating the dispersal of organisms. From the literature review I identified certain key elements of functionality for wildlife corridors. These elements included sufficient width of the corridor to form an undisturbed core habitat, the absence of barriers and disturbance within the corridor and the connectivity of the corridor habitat itself. When tested on fictitious example corridors, the index was able to differentiate wildlife corridors according to their ecological quality. To further test the index, it was applied on a real-world wildlife corridor located in Uusimaa as a case study. The index was found to be effective on evaluating the ecological functionality of wildlife corridors, but further development needs were also discovered. The most important next steps are to fine-tune the parameter values given to factors hindering dispersal (resistance values) based on an extended literature review, and systematic testing on real-world corridors to spot irregularities and possible mistakes. At its current state the index can be used to identify features that impede or promote the ecological functionality of the corridor, even without extensive prior inventories on the areas’ biodiversity features.