Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "lipids"

Sort by: Order: Results:

  • Boiko, Elizaveta (2023)
    In this master’s thesis project, I studied the association of lipid molecules phosphatidylinositol 4-phosphate (PI4P) and phosphatidylinositol 3-phosphate (PI3P) with autophagy in neurons. One of the aims of the study is to determine the level of basal autophagy in primary hippocampal neurons and to come up with a protocol for autophagosome observation without forcing radical changes in cell culture conditions. Other mammalian cells have extremely weak basal autophagy, but they increase it significantly in response to starvation, for example. However, neurons are extremely sensitive to any changes in their surroundings. They change their morphology, behaviour and biochemical properties, and often they simply do not survive. Therefore, the goal is a protocol for successful autophagy observation with minimal external influence. Despite the debate around basal autophagy in neurons, I observed high levels of basal autophagy in neuronal cells incubated in media without supplements. Also, my observations revealed that the inhibition of the last step of autophagosome processing with Bafilomycin A1, was enough to cause the massive accumulation of large autophagosomes. Results demonstrated that primary hippocampal neurons exhibit high levels of basal autophagy, suggesting that on the contrary to other mammalian cells neurons might not have enough potential to increase autophagy when it is induced pharmacologically or by stressful conditions. This would explain why autophagy induction is often claimed to be ineffective for neuronal cultures. The main goal is to observe and compare PI4P presence on autophagosomes in normal conditions and when autophagosome:lysosome fusion is inhibited with Bafilomycin A1. The side goal is to observe PI3P presence on autophagosomes as well. I transfected primary hippocampal neurons with fluorescent probes for PI4P or PI3P as well as for autophagosome-related protein LC3. Localization data was collected with live-cell imaging on a confocal microscope. As expected, PI3P was not detected on autophagosomes located in soma. It is involved in the initial vesicle biogenesis in distal axons but not in later events taking place closer to the cell body. PI4P showed high degree of colocalization with LC3, indicating PI4P presence on autophagosomes, but only when the fusion was presumably inhibited by Bafilomycin A1. These results suggest that PI4P appears on autophagosomes either as a result of compensatory pathway, where autophagosomes fuse with late endosomes instead of lysosomes; or as a molecule normally involved in autophagosome:lysosome fusion. Literature supports the latter explanation, but it cannot be confirmed without further research. These results give an insight into PI4P role in neuronal autophagy and might be relevant for the future research of autophagy disruption and aggregate accumulation in neuronal diseases as a consequence of abnormal lipid signalling, lipid metabolism and transport.