Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "mate choice"

Sort by: Order: Results:

  • Kivelä, Linnea (2022)
    Light pollution, or artificial light at night, is a globally increasing environmental problem that threatens especially nocturnal organisms dependent on darkness. Modern lighting technology offers opportunities for mitigation of the ecological impacts of light pollution, but effective implementation requires better understanding of how different artificial light qualities, such as light spectrum, influence its effects on wildlife. The common glow-worm, Lampyris noctiluca, is an example of a species believed to be suffering from light pollution. Artificial light has been found to interfere with glow-worm reproduction by decreasing the success of females in attracting males with their glow. In this study, I investigated how the color (spectrum) of artificial light affects the attraction of male glow-worms towards a female mimicking stimulus, in order to find out whether certain colors of artificial light are less detrimental to glow-worm reproduction than others. I used dummy female traps to capture male glow-worms in the field and compared the catch success of traps in different treatments: illuminated from above with blue, white, yellow or red artificial light, or left unilluminated as a control. I also conducted a laboratory experiment where male glow-worms were given two choices. One of the choices was an unilluminated dummy female, and the other was either a dummy female illuminated with yellow or red light, or a red light illuminated area with no dummy female. Traps illuminated with short wavelength artificial light (blue and white) caught significantly fewer males than unilluminated traps or traps illuminated with long wavelength artificial light (yellow and red). There was no significant difference in the number of males caught between unilluminated traps and traps illuminated with long wavelength artificial light. In the laboratory, males significantly preferred an unilluminated dummy female over a dummy female illuminated with yellow light. However, the males chose a red light illuminated dummy female or area more often than an unilluminated dummy female, although this difference in preference was not significant. The results show that mate attraction in the glow-worm is influenced by artificial light color, with short wavelength artificial light decreasing the mate attraction success of female glow-worms more than long wavelength artificial light. This could point to yellow-tinted artificial lighting presenting an ecologically friendly alternative to cool white lighting. However, the specifics of how long wavelength artificial light affects male glow-worm perception of female attractiveness are still unclear. Furthermore, male glow-worms show signs of attraction towards long wavelength artificial light, which could form an evolutionary trap for them. The impacts of artificial light spectrum on organisms are thus not straightforward, but can vary depending on both species and situation.
  • Mannerla, Miia (2009)
    The Baltic Sea suffers from eutrophication caused by the increased use of nitrogen- and phosphorus based fertilizers in agriculture. When these nutrients end up in the water ecosystem, they increase the growth of filamentous algae causing turbidity at many locations. The three-spined stickleback (Gasterosteus aculeatus) breeds at the shallow coastal waters of the Baltic Sea, which are often eutrophied. In these locations turbidity of the water may interfere with the mating cues used by the three-spined stickleback, which in turn may lead to decreased fitness of the population. I attempted to find out how turbidity alters the use of visual and olfactory cues in the mate choice of the three-spined stickleback, as well as to see if these changes decrease the viability of the following generation. Female three-spined sticklebacks choose their mates based on visual and olfactory cues. During the reproductive season stickleback males turn bright red and attract females to their nests by a conspicuous courtship dance. Females use males' red colouration, size and courtship intensity as visual cues when choosing an appropriate mating partner. They also pay much attention to olfactory cues. Female sticklebacks are able to smell MHC-encoded peptides which are secreted to the males' skin. The allelic combination of MHC determines which pathogens the individual has resistance for, and this resistance may be inherited by the offspring. I empirically tested the use of olfactory and visual cues in the mate choice of the three-spined stickleback using turbid and clear water as treatments. In mate choice tests a female was made to choose from two males in circumstances where she was allowed to use only one of the cues (visual or olfactory) or both cues simultaneously. The redness and size of the males was measured. Artificial inseminations were performed to produce offspring, whose growth rate was measured to evaluate fitness. Based on the results of these experiments, turbidity alters the use of mating cues of the three-spined stickleback. Visual cues seem to be important in clear water, whereas in turbid water olfactory cues increase in importance in relation to visual cues. The sample size was limited to reliably test offspring fitness effects, but it seems that the alteration in the use of mate choice cues may influence population viability in the long term. However, additional research is needed to determine this.