Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "methane"

Sort by: Order: Results:

  • Turunen, Pauliina (2021)
    Peatlands play an important role in the carbon cycle. Natural peatlands are in general sinks of carbon dioxide (CO2) and sources of methane (CH4), whereas drained peatland forests are CH4 sinks but their CO2 emissions increase compared to natural peatlands. Rotational even-aged forestry followed by ditch network maintenance (DNM) affect the water dynamics of the soil by increasing the water table level (WTL) first during clear-cut after which the WTL is lowered by DNM. Rising of WTL causes more anaerobic conditions and risk that CH4 sink turns into CH4 emissions. Lowering the WTL causes more aerobic conditions and strengthens the CH4 sink function but also increases CO2 emissions. In continuous cover forestry (CCF) where only part of the trees are removed, WTL would be naturally maintained. This could maintain CH4 sinks while lowering CO2 emissions by keeping the WTL at an adequate depth. Net emissions of CO2 and CH4 could be expected to follow the changes in CO2 and CH4 concentrations in soil. To understand the processes isotopic values can be used to interpret the production pathways of CO2 and CH4 since different pathways produce different isotope values. In this master’s thesis the aim was to study how the concentration of CO2 and CH4 as well as CO2 isotope values change in a peat soil and how partial harvest affects them. Gas samples were collected from the peat profile (5 – 65cm) at two different drained peatland forests, Lettosuo and Paroninkorpi, from control plots and partial harvested plots during 2019 and 2020. Samples were also collected from the moss layer. In addition, WTL, temperature of peat and O2 concentrations were measured. Concentrations and isotope values were analysed the laboratory with gas chromatography and isotope analyser (Picarro G2201-i). Water table level and temperature were generally higher in partial harvested areas than in control. Highest concentrations of both CO2 and CH4 were found in the deeper layers of the soil. Partial harvest had higher CO2 and CH4 concentrations in the deep layers (50 – 65cm) than control. The differences between partial harvest and control areas could be explained with the higher WTL in partial harvest. The measured isotopic values of CO2 indicated that most of the CO2 in the soil was derived from atmosphere or heterotrophic respiration and only <<20 % of CO2 was derived from CH4 oxidation. Even though both in control and in partial harvest the CH4 concentrations in the deep soil layers were high, the oxidation processes decrease the concentrations under the atmospheric CH4 concentration maintaining the CH4 sinks in both treatments. In partial harvest the CH4 sink is not in risk due to oxidation even though the WTL is higher. This should be verified with gas flux measurements.
  • Lindholm, Viivi (2022)
    Environmental factors are important tools in constructing methane flux models and estimations. Among the abiotic factors, plants and their functional groups have been noted to have significant effect on methane fluxes for three reasons. First, the vegetation community compositions express their abiotic environmental factors that affect not only the plants, but also local methanogen and methanotroph communities. Second, the vegetation itself might produce methane emissions and have a direct effect on methane balance. Third, the plant functional groups and species have differences in their chemical and physical properties that support different methanogen communities and therefore have an indirect impact on methane fluxes. In this study, methane fluxes of different plant communities were observed during one growing season in northern boreal catchment area in Muonio. Study focuses to determine the link between methane fluxes and abiotic and biotic environmental factors in different vegetation types. Closed chamber technique was used to measure methane and carbon dioxide fluxes from 23 plots every two weeks in period of June-August. Environmental data, such as moisture, temperature species composition etc. were collected from the plots. Vegetation types for each plot were determined via ordination analysis. Linear mixed-effects regression model and generalized additive model were applied and compared to observe the relationships of methane and environmental factors in different vegetation types. Dataset was divided into four vegetation types in clustering analysis: wet fen, pine bog, spruce swamp and forest. The greatest amount (average 5959 µg/m²/h) and biggest range (standard deviation 5285 µg/m²/h) of methane emissions were observed on wettest fen-like study sites. Peatland types in general acted as net methane sources. The driest, forest-like vegetation type acted as a net methane sink. The amount (average -107 µg/m²/h) and range (standard deviation 117 µg/m²/h) of methane fluxes were very moderate in comparison to peatland types. These effects intensified towards the climax of growing season. The most significant environmental factors were mostly abiotic on driest study sites and the whole plant biomass was more significant biotic methane flux regulating factor than plant functional groups. On wetter study sites, the role of abiotic factors decreased, and plant functional group increased. Graminoids were linked to bigger methane emissions especially on wetter study sites. Forest mosses and different shrub types seemed to have a link with lower methane emissions or methane absorption. The effect of other plant functional groups on methane fluxes varied more, and their role remains unclear. None of the environmental factors could estimate the methane flux alone, and the methane budget seems to be a sum of multiple variables in each vegetation type. The role of plant functional groups varied in different vegetation types and was dependent on surrounding vegetation. More research is needed to get better tools to estimate methane balance and to understand the underlying mechanisms in climate and environmental change.