Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "mikrolevä"

Sort by: Order: Results:

  • Nieminen, Martta (2013)
    The trend of energy policy in European Union as well as in international context has lately been to increase the share of renewable biofuels. The causes for this are global warming, shrinking reserves of fossil fuels and governments' aspiration for energy independence. Microalgae have shown to be a potential source of biofuels. Though cultivation of microalgae has a long history, has production for fuel yet been unprofitable. Production has become more effective as cultivation has shifted from open ponds to controlled photobioreactors but to achieve effective cultivation methods substantially more understanding on the ecophysiology of microalgae is needed. The aim of my thesis was to research the optimal light intensity and temperature of photosynthesis for three microalgae (Chlorella pyrenoidosa, Euglena gracilis and Selenastrum sp.), which are the main parameters limiting the level of photosynthesis in nutrient rich environments such as photobioreactor. The research strains were incubated in eight light intensities (0,15-250 µmol m-2 s-2) and in 5-6 temperatures (10-35 °C). Photosynthetic activity was determined with radiocarbon method which is based on the stoichiometry of photosynthesis. The purpose of radiocarbon method is to estimate how much dissolved carbon dioxide do the algae assimilate when photosynthesizing. In the method the algae are incubated in light and dark bottles where certain amount of radiocarbon (14C) has been added as a tracer. The algae fix 14C in the proportion to available 12C. 14C method has become the most common way to measure the photosynthesis of microalgae. All of the algal strains grew in 10-30 °C but C. pyrenoidosa was the only one which grew also in 35 °C. The data was analyzed by fitting them with two photosynthesis-light intensity relationship models and one photosynthesis-temperature relationship model and as a result values of essential parameters, i.e. optimal light intensity (Iopt) and temperature (Topt) for photosynthesis, could be estimated. The model which gave the best fit was chosen to describe the photosynthesis-light intensity relationship. The optimal light intensity for C. pyrenoidosa ranged between 121–242 µmol m-2 s-2 and optimal temperature was 15 °C. Corresponding values for E. gracilis were 117-161 µmol m-2 s-2 and 24,1 °C, and for Selenastrum sp. 126-175 µmol m-2 s-2 and 16,7 °C. Q10-values were also determined. With all research strains, the level of photosynthesis increased as light intensity and temperature grew until optimal values were reached. The strains tolerated higher light intensities in warmer temperatures but after reaching the optimal temperature, the level of photosynthesis did not increase any more with elevating temperature. Robust algal strains, i.e. strains, that are most adaptable in terms of light intensity and temperature, are the most prominent ones for biofuel production. From these research strains the most adaptable strain in terms of light intensity was C. pyrenoidosa and in terms of temperature Selenastrum sp. C. pyrenoidosa had superior carbon fixation rate in relation to cell size. Therefore it can be concluded that C. pyrenoidosa is the most suitable algal strains for biofuel applications of the strains assessed here.
  • Mercier, Léon (2018)
    PURPOSE AND GOALS Microalgae are unicellular eukaryotic organisms capable of photosynthesis. They harvest sunlight and efficiently take up carbon dioxide and nutrients such as nitrogen and phosphorus from their environment and use them for their growth. Due to these properties, their rapid growth and ability to survive in a variety of environments, microalgae have potential in biotechnological applications that promote nutrient recovery and recycling, water purification and the carbon neutral production of biochemicals and possibly biofuels. The purpose of this study was to investigate the suitability of a side stream water originating from the production of baker’s yeast (yeastwater) for the cultivation of a species of microalga called Euglena gracilis. The study aimed to determine the capacity of this water to support growth and protein production of E. gracilis as well as the capacity of E. gracilis to remove nutrients from the water. The effect of filtration of the water on these parameters was also studied. Yeastwater contains an organic molecule called betaine in relatively high concentrations. Betaine has previously been shown to boost the production of the important vitamin cobalamin in bacteria. The study aimed to determine the effect of betaine on the growth of E. gracilis and on the production of cobalamin in the algal-bacterial symbiosis. METHODS E. gracilis was cultured in laboratory scale photobioreactors. Its growth, protein production and nutrient uptake capacity was determined. Baker’s yeast production side stream water diluted with MQ-water was used as the growth medium either in filtered or unfiltered form. A control treatment was prepared where no microalgal inoculate was added to the photobioreactor. The same microalga was also grown in a synthetic nutrient medium with and without betaine. The uptake of betaine and biomass concentrations of cobalamin were determined. For the determination of microalgal growth, dry weight determination and flow cytometry analysis were used. Protein production was determined on the basis of total nitrogen concentration in the biomass. Spectrophotometric measuring kits were used for the determination of nutrient concentrations. Liquid chromatography techniques were used for the determination of betaine and cobalamin concentrations. RESULTS Significant microalgal growth was observed in filtered yeastwater, while growth in unfiltered yeastwater was very low. Nitrogen removal was higher in presence of E. gracilis compared to the control treatment. Protein production in yeastwater was comparable to that of microalgae grown in synthetic medium. E. gracilis grew much better in the synthetic media supplemented with betaine than without the addition. Betaine enrichment had no effect on cobalamin production. Cobalamin was produced in unfiltered yeastwater both with and without the presence of E. gracilis. CONCLUSIONS Unfiltered yeastwater does not support growth of E. gracilis possibly due to its high turbidity. Filtered yeastwater, on the other hand can support the production of E. gracilis biomass. E. gracilis can be used to reduce nitrogen concentrations in yeastwater. Yeastwater can support cobalamin production by bacteria, but this phenomenon did not benefit from the presence of the microalga. The effect of betaine on microalgal growth warrants further study to determine whether it is related to the accumulation of intracellular nutrients, storage compounds or to some other phenomenon. Yeastwater is a promising nutrient feedstock for microalgal biomass production. However, the role of filtration and possibility of using other methods for turbidity reduction needs to be further studied.