Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "nutrients"

Sort by: Order: Results:

  • Mattila, Bernd-Niklas (2020)
    Cladocerans play a key role in the aquatic ecosystem. They are abundant in lakes and are an essential part in the carbon and energy transfer of the food webs. These species are, however, prone to various environmental changes. Estimates have shown that dissolved organic carbon (DOC) concentrations in northern lakes are likely to increase in the future. This increase of DOC in lakes has multiple impacts ranging from nutrient levels to shading impacts reducing primary productions. Investigating changes in cladocerans along a DOC gradient could help us understand how these species might develop in the future in our changing climate. In this Master’s Thesis, I studied how the cladoceran body length and community structure varied between 9 lakes with dissolved organic carbon (DOC) concentration ranging from 2.4-33.5 mg l-1. For the analyses, these lakes where divided into two groups with a threshold of 12 mg l-1 or into groups of three based on their DOC concentrations. Then, the results were compared with cladoceran length data from an earlier study. Additionally, the changes in phytoplankton abundances and communities as well as the relation between DOC concentration and other environmental variables were analysed. The results showed an increase in the cladoceran body length above the DOC threshold. Moreover, the changes in body length varied between the studied genera. Both Ceriodaphnia sp. and Diaphanosoma sp. body length decreased in groups with higher DOC concentrations while Bosmina sp. were larger at high DOC concentrations. DOC concentration did not have any significant effect on the community structure of zooplankton. The studied lakes varied from their environmental condition making comparisons and general statements challenging. The results indicated that DOC concentration regulates the planktonic communities, but it is solely an imprecise predictor for changes in zooplankton communities. However, cladoceran densities seemed to benefit from increased DOC concentrations as nutrient levels also increased. Changes in cladoceran body lengths were challenging to interpret, because there are multiple factors that can have an impact both alone and combined with others.