Browsing by Subject "peatland"
Now showing items 1-4 of 4
-
(2021)Peatlands play an important role in the carbon cycle. Natural peatlands are in general sinks of carbon dioxide (CO2) and sources of methane (CH4), whereas drained peatland forests are CH4 sinks but their CO2 emissions increase compared to natural peatlands. Rotational even-aged forestry followed by ditch network maintenance (DNM) affect the water dynamics of the soil by increasing the water table level (WTL) first during clear-cut after which the WTL is lowered by DNM. Rising of WTL causes more anaerobic conditions and risk that CH4 sink turns into CH4 emissions. Lowering the WTL causes more aerobic conditions and strengthens the CH4 sink function but also increases CO2 emissions. In continuous cover forestry (CCF) where only part of the trees are removed, WTL would be naturally maintained. This could maintain CH4 sinks while lowering CO2 emissions by keeping the WTL at an adequate depth. Net emissions of CO2 and CH4 could be expected to follow the changes in CO2 and CH4 concentrations in soil. To understand the processes isotopic values can be used to interpret the production pathways of CO2 and CH4 since different pathways produce different isotope values. In this master’s thesis the aim was to study how the concentration of CO2 and CH4 as well as CO2 isotope values change in a peat soil and how partial harvest affects them. Gas samples were collected from the peat profile (5 – 65cm) at two different drained peatland forests, Lettosuo and Paroninkorpi, from control plots and partial harvested plots during 2019 and 2020. Samples were also collected from the moss layer. In addition, WTL, temperature of peat and O2 concentrations were measured. Concentrations and isotope values were analysed the laboratory with gas chromatography and isotope analyser (Picarro G2201-i). Water table level and temperature were generally higher in partial harvested areas than in control. Highest concentrations of both CO2 and CH4 were found in the deeper layers of the soil. Partial harvest had higher CO2 and CH4 concentrations in the deep layers (50 – 65cm) than control. The differences between partial harvest and control areas could be explained with the higher WTL in partial harvest. The measured isotopic values of CO2 indicated that most of the CO2 in the soil was derived from atmosphere or heterotrophic respiration and only <<20 % of CO2 was derived from CH4 oxidation. Even though both in control and in partial harvest the CH4 concentrations in the deep soil layers were high, the oxidation processes decrease the concentrations under the atmospheric CH4 concentration maintaining the CH4 sinks in both treatments. In partial harvest the CH4 sink is not in risk due to oxidation even though the WTL is higher. This should be verified with gas flux measurements.
-
(2024)Peatlands are a significant carbon and nitrogen reservoirs, making them potential sources of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) emissions. Variations in water table level change the oxygen content of peat, affecting the oxidation-reduction or redox state of the peat, which is known to influence the biochemical processes and thus greenhouse gas (GHG) emissions. The aim of this study was to assess the effect of controlled anoxic redox conditions and inorganic electron acceptors (TEAs) on redox potential (Eh), and N2O, CH4, and CO2 emissions. In this study during an anaerobic incubation experiment, the rates of formation of these GHGs and Eh values as a function of time were measured from drained (D) and undrained (UD) peat of three nutrient levels: mesotrophic (ME), oligotrophic (OL), and ombrotrophic (OM). Redox conditions were controlled to three levels by nitrate (NO3-), ferric iron (Fe3+), and sulphate (SO42-). In addition, measurements were performed on untreated (Ctrl) peat. The peat was in an anoxic state throughout the incubation (Eh < 300 mV) and the values were in the order of TEA reduction, even though they were mainly in the iron and manganese reduction zones, probably due to the naturally high iron content of the peat. As expected, N2O formation was highest in flasks with added NO3-, and N2O formation was weak and ceased without addition. CH4 formation was reduced in flasks with added NO3- or SO42-, and SO42- addition also inhibited CO2 formation on which NO3- addition had no effect. In contrast, the addition of Fe3+ increased both CO2 and CH4 formation compared to Ctrl treatment, and it is possible that methanogens were involved in the reduction of Fe3+. In Ctrl flask, the redox state did not decrease to the lowest level compared to the other treatments as expected, but the Ctrl treated UD ME peat had the highest CH4 formation at the end of incubation. For all treatments, GHG emissions were higher from nutrient-rich peat in the descending order ME > OL > OM. In general, UD peat also had higher gas formation than D peat. All GHGs were formed the most while Eh values were around 0 mV and the value was especially high for CH4 formation, probably due to the linkage between methanogens and iron. The poor ability of the Pt electrode to detect NO3- or oxygen was the most likely reason for the variable and low Eh values of the flasks with NO3- addition. For the same reason, oxygen leakage of the anaerobic chamber was most likely responsible for the varying Eh values measured from Ctrl treated OM peat. This study suggests that Eh measurement is a useful predictor of the redox state and reactions, but it must be considered together with other measurements and analyses such as microbial analysis, nutrient analysis, and GHG measurements to predict redox processes and GHG emissions in anaerobic peatland. In particular, the role of iron on CH4 emissions requires further research.
-
(2020)Northern peatlands have a major role in the global carbon cycle due to their carbon stocks and fluxes of carbon dioxide (CO2) and methane (CH4). Anthropogenic climate change may affect peatland carbon dynamics through changes in e.g. primary production, hydrology, and permafrost dynamics. It is uncertain whether these changes will lead to northern peatlands becoming significant sources of carbon to the atmosphere. Changes in moisture conditions especially can be an important factor in determining the carbon sink potential of northern peatlands. In this thesis I examine the palaeohydrology and peat accumulation over the past centuries in a permafrost peatland complex in Lovozero, Kola Peninsula, Russia. I used testate amoebae as a proxy of past changes in moisture conditions. Other study methods used here are detrended correspondence analysis (DCA) and 14C and 210Pb dating. The results were also supplemented with plant macrofossil and carbon accumulation data provided by other members of the research team. The results show varying responses of the peatland hydrology and peat accumulation to the past climatic shifts, suggesting that the changes have been driven more by autogenic factors rather than climate. However, all three sites indicated a drying trend and an increased peat accumulation for the last century. Yet, the last decade is charachterised by a wet shift. The wet shifts suggest that the peatlands may have crossed a threshold where increased evapotranspiration is exceeded by increased moisture due to thawing permfrost. The surface peat layers of all three sites were dominated by mixotrophic testate amoebae, which may have contributed to the high peat accumulation. The inconsistency of past successional pathways identified at Lovozero peatlands and the drying trend over the past century correspond to the previous studies from northern peatlands elsewhere. However, the most recent surface wetting during the last decade differs from what has been reported for the other northern sites. This suggests that the response mechanisms of peatlands to the anthropogenic climate change may not be uniform. Thus, further research is inevitably needed to increase our understanding of peatland-climate intercations.
-
(2023)Suot ovat tärkeä osa maailmanlaajuista hiilen kiertokulkua, koska ne varastoivat suuria määriä hiiltä eloperäiseen materiaaliin turpeen muodossa, joka muodostuu biomassan hitaasta hajoamisesta kylmän, hapettoman ja matalan pH:n ympäristön vuoksi. Soista vapautuu myös metaania (CH4), joka on voimakas kasvihuonekaasu, jonka lämmityspotentiaali on 28 kertaa voimakkaampi kuin hiilidioksidin (CO2). Turvemaiden netto-C-päästöt riippuvat suotyypistä ja ympäristöolosuhteiden muutoksista, kuten pohjaveden korkeudesta tai turpeen lämpötilasta, ja niistä johtuvasta tasapainosta CH4-päästöjen ja turpeen muodostumisesta johtuvan hiilinielun välillä. Tämän tutkimuksen tavoitteena oli selvittää, miten kasviyhteisöt ja muut säätelevät tekijät, kuten lämpötila, pohjaveden korekus, LAI ja suotyyppi vaikuttavat sekä ilmakehän hiilivirtaan että turpeen CH4- ja CO2-pitoisuuksiin. Lisäksi tehtiin stabiiliin hiili-13 isotoopin mittauksia, jolla saadaan lisätietoa metanogeneesin biogeokemiasta. Mittaukset otettiin rahkasammalvaltaisista mättäistä ja saravaltaisista välipinnoista. Mittauspisteille tehtiin kolme kasvillisuuden manipulointia, joilla selvitettiin kasvillisuuden vaikutuksia hiilidynamiikkaan 1. putkilokasvien ja sammaleiden poisto, 2. pelkkä putkilokasvien poisto, 3. Kaikki kasvillisuus tallella. Tutkimuspaikka sijaitsee Etelä-Suomessa Siikanevan suoalueella. Mittaukset tehtiin vuonna 2018 touko-syyskuussa ombrotrofisessa keidasrämeessä ja oligotrofisessa saranevassa. Mittauskausi oli poikkeuksellisen kuiva ja pohjavedenkorkeus oli keskiarvoa matalammalla. Tästä johtuen monia aikaisemmin havaittuja korrelaatioita ei löytynyt. CH4-virtojen suuruus riippui suotyypistä ja kasvillisuuden manipuloinnista. Keskimääräiset turpeen CH4 ja CO2 pitoisuudet olivat hieman korkeammat mittauspisteissä saranavevalla. Pitoisuudet kasvoivat nopeasti syvyyden myötä, 50 cm:n syvyydessä pitoisuudet olivat useita suuruusluokkia suurempia kuin 7-20 cm:n syvyyksissä korkeimpien, mittausten ollessa yli 500 000 ppm. δ13C-CH4-arvot muuttuivat negatiivisemmiksi tyypillisesti syvyyden myötä, kun hydrogenotrofinen metanogeneesi yleistyi. Kasvillisuuden manipuloinneilla oli vaihtelevia vaikutuksia CH4-vuohon, eikä lehtipinta-alaindeksi osoittanut vahvaa lineaarista korrelaatiota CH4:n kanssa. CH4-virtaus oli myös epäherkkä pohjaveden korkeudelle, mutta kasvien välittämä CH4-kuljetus ei todennäköisesti ollut syynä, koska kasvillisuuden poistokäsitellyt mittauspisteet osoittivat myös samanlaista epäherkkyyttä veden korkeudelle. Putkilokasvien ja sammaleiden poistaminen vähensi yleensä CH4-virtoja. Mättäissä, joissa putkilokasvit oli poistettu, mutta sammaleita ei, oli alhaisimmat CH4-virrat. Yhteenvetona voidaan todeta, että useimmat ympäristömuuttujat eivät osoittaneet vahvaa korrelaatiota CH4:n kanssa. Mikään yksittäinen muuttuja ei selittänyt selvästi eroja CH4-vuossa. Turpeen CH4 ja CO2 pitoisuudet riippuvat voimakkaasti syvyydestä ja suotyypistä. Kasvillisuuden poistaminen tyypillisesti vähensi CH4-virtoja.
Now showing items 1-4 of 4