Browsing by Subject "zebrafish"
Now showing items 1-3 of 3
-
(2024)Background: ProSAAS is a neuroendocrine peptide precursor implicated in various physiological pathways and several disorders. Despite its potential significance, there is a notable lack of studies exploring the roles of proSAAS and its derived peptides. Objectives: This hybrid systematic review aims to provide an overview of the neuroprotective role of proSAAS in brain-related disorders and its potential as a biomarker. The hypothesis is that the loss of proSAAS, known for its many neuroprotective properties, would affect dopaminergic and serotonergic neurons in zebrafish brains. Methods: Following PRISMA 2020 guidelines, this review includes studies on proSAAS in brain-related disorders and its biomarker potential, excluding non-brain-related physiological aspects. The focus is on dopaminergic and serotonergic systems in zebrafish. Searches were conducted on PubMed using keywords like "proSAAS," "aminergic system in zebrafish," "dopaminergic neurons in zebrafish," and "serotonergic neurons in zebrafish" on 04.05.2024, 09.05.2024, 11.05.2024, and 12.05.2024. Risk of bias was evaluated using the Cochrane Collaboration’s and AMSTAR 2 tools. For the experimental part, immunohistochemical analysis was conducted on zebrafish aged 4, 5, and 6 days post-fertilization. Results: A total of 103 studies were included in the systematic literature review. Six studies highlighted the neuroprotective role of proSAAS in neurodegenerative diseases. Two studies linked proSAAS to homeostatic upscaling, and five identified it as a potential biomarker for neurological conditions. Furthermore, nine studies investigated the role of proSAAS-derived peptides. Experimental results from immunohistochemical analysis showed no significant changes in dopaminergic and serotonergic systems between wild type, heterozygote, and knockout zebrafish. Discussion: Limitations include potential bias from included studies, small sample sizes and limited repetitions of the experiments. The review suggests proSAAS is critical for brain function and neurological conditions, though experimental findings did not show significant effects on dopaminergic and serotonergic neurons in zebrafish.
-
Electrophysiological screen reveals 8 genes in zebrafish model of catastrophic childhood epilepsies (2022)Catastrophic childhood epilepsies are characterized by persistent seizures and are frequently associated with cognitive and developmental impairments. Many, approximately 30%, of these epilepsies are rare genetic disorders that do not have effective therapeutic options. The bench to drug process is lengthy and expensive, and thus it is critical to find more affordable drug screening options. Zebrafish are an ideal model organism for screening studies as they share considerable (70%) genetic similarities with humans and are cheap to maintain with efficient breeding capabilities. In the present study, 37 zebrafish lines were screened for epileptic brain activity to identify high priority genes for future pharmacology studies. Each zebrafish line, generated by CRISPR-Cas9 represents a single gene loss of function mutation associated with 3 epilepsy based on genome wide association studies. Larval zebrafish were screened for spontaneous seizure activity using electrophysiological assays. The following 8 genes were significantly associated with spontaneous seizure activity in zebrafish: EEF1A, ARX, GRIN1, GABRB3, PNPO, STRADA, SCN1A, and STXBP1. There is now an open-source database for all 37 zebrafish lines, which contains sequencing information, survival curves, behavioral profiles, and electrophysiological data. The findings reveal novel target genes for future drug development and discovery. Future work is needed to explore whether zebrafish also model co-morbidities commonly seen in human patients with epilepsy.
-
(2020)Histamine and hypocretin/orexin are neuromodulators important for regulation of alertness and wakefulness. These systems project to major areas of the brain, are highly conserved among vertebrates and they significantly innervate each other. Different studies have indicated an interaction between the histaminergic and orexin systems, however the role of histamine in this interaction is still not well-established. The goal of this study was to examine possible changes in orexin neurons development and larvae behaviour, after genetic loss of histamine decarboxylase (hdc), the histamine-synthesizing enzyme. Using whole-mount in-situ hybridization and immunofluorescence staining we observed a significant reduction in the expression of the hcrt mRNA and the orexin A peptide in 6 dpf hdcKO zebrafish larvae. However, KO of hdc had no effect on startle response, dark flash response and sleeping behaviour of 6 dpf larvae. To further investigate the regulatory role of the histaminergic system, we employed treatment of hdcWT and KO larvae with ciproxifan, a histamine H3 receptor inverse agonist. Ciproxifan treatment increased darkness habituation in 7 dpf hdcWT and KO larvae but reduced the intensity of the dark flash response only on hdcWT larvae. Furthermore, ciproxifan treatment differentially affected the expression of the orexin A peptide in 7 dpf hdcWT and KO larvae but had no effect on the expression levels of the hcrt mRNA. Collectively, these findings suggest the significance of histaminergic signaling for normal development of orexin neurons and the implication of histamine in the execution of the dark flash response. Lastly, this study indicates the complex role of the histamine H3 receptor and the requirement of further studies for better characterization of its function.
Now showing items 1-3 of 3