Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "GDNF"

Sort by: Order: Results:

  • Montonen, Heidi (2013)
    Literature review: The plasma membrane DA transporter (DAT) belongs to the family of Na+/ClÙÄÉ≠ dependent neurotransmitter transporters. DAT is the primary mechanism for clearance of dopamine from the extracellular space and transporting it back to the presynaptic nerve terminals. There's a great interest in the DAT and its regulation as its substrate, dopamine, mediates a wide array of physiological functions e.g. locomotor activity, cognition and the control of motivated behaviors. With selective transport DAT limits the intensity and the duration of dopaminergic signal. Its function is regulated by several kinases, phosphatase and protein-protein interactions. The altered expression of DAT may be related to several neurological diseases such as Parkinson's disease, addiction and ADHD. To study DAT's function, several genetically modified mouse lines including DAT knockout mice, DAT knockdown mice and DAT knock in mice with elevated DAT levels have been generated. Experimental part: Glial cell line-derived neurotrophic factor (GDNF) plays important role in the survival and function of dopaminergic neurons, learning, memory and synaptic plasticity. More recently, several studies have shown that GDNF can also negatively regulate the actions of abused drugs. The aim of this study was to investigate GDNF's role and mechanism of action in plasticity and function of the dopaminergic neurons projecting to striatum. For that purpose, we used in vivo microdialysis in freely moving mice. We chose two different mouse lines: MEN2B mice with constitutive active Ret-signaling and elevated striatal dopamine concentrations, and GDND-cKO mice that lack GDND in the central nervous system. Microdialysis guide cannula was implanted in the dorsal striatum in the stereotaxic surgery and the mice were allowed to recover for 5-7 days. The concentrations of dopamine and its metabolites DOPAC and HVA and also 5-HIAA were determined from the samples by highperformance liquid chromatography. Microdialysis was performed twice for every mouse on days 1 and 4. Between microdialysis days, the mice were given amphetamine 1 mg/kg i.p. on days 2 and 3. In the microdialysis experiment, the mice received amphetamine stimulation (100 µM/60 min) via microdialysis probe. The placements of microdialysis probes were verified from fixed brain sections after the experiments. Amphetamine increased the dopamine output in both mouse lines, but there were no statistically significant differences in striatal dopamine concentrations between genotypes neither after acute nor chronic administration. However, there was a difference between the dopamine outputs in days 1 and 4 in both MEN2B and GDNF-cKO mice: The striatal dopamine concentrations were significantly lower on the second microdialysis day. This may be a sing from tolerance to the drug. However, without more research, it is not possible, by this experiment, to draw direct conclusions of GDNF's role in addiction and in plasticity in striatum. It is possible that the differences between genotypes are too small to be seen with microdialysis. Development of compensatory mechanisms in mice cannot be ruled out either. Effects may also vary between different brain areas.
  • Virtanen, Heikki (2019)
    Literature review part: The enteric nervous system (ENS) often called “the second brain” is considered its own autonomic division that can independently regulate gut function. The ENS is derived from enteric neural crest-derived cells (ENCCs), which colonize the gut during development. Development of the ENS is a complex process, and many signalling pathways are required for a properly functioning ENS, especially GDNF/Gfrα1/RET signalling controlling survival, proliferation, migration, and differentiation of ENCCs. Hirschsprung’s disease (HSCR) is the most common congenital disease affecting gut motility. The prevalence of HSCR is 1:5000, and it is characterized by a complete lack of enteric neurons (aganglionosis) in the distal colon. Due to impaired intestinal motility, infants may have constipation, emesis, abdominal pain or distention, and, in some cases, diarrhea. The most life-threatening symptom is HSCR-associated enterocolitis (HAEC), which occurs in 30-50% of patients. Routine treatment for HSCR is a surgical operation called “pull through” in which the aganglionic segment is removed, and the remaining ganglionic segment is joined to the anus. However, the risk of developing HAEC after successful surgery still exists. Histopathological analysis has revealed that HAEC is accompanied by various changes in the gut epithelium, especially in mucin-producing goblet cells. These changes include hyperplasia of the goblet cells, altered mucin profile, retention of mucin, damaged and disorganized epithelium structure, inflammation, and bacterial adherence to the epithelium. However, a lack of suitable postnatal HSCR mouse models has partially hindered the progress of pinpointing the exact order of these events. A RET mutation found in half of the patients is overwhelmingly the biggest risk factor for HSCR. RET is a receptor on the cell membrane that mediates the effects in GDNF/Gfrα1/RET signaling pathway. of Knock-out mice of Gdnf, Gfra1 and Ret all have intestinal aganglionosis, resembling HSCR. However, to date, no mouse models of HSCR affecting GDNF/Gfrα1/RET signalling exist because pups are born without kidneys and die soon after birth. Experimental part: The GFRa1 hypomorphic mouse line (Gfra1hypo/hypo) created by Dr. Jaan-Olle Andressoo is the first successful model that survives past birth while manipulating GDNF-Gfrα1-RET signalling and phenocopying HSCR. These mice have 70-80% reduction in the expression of Gfrα1 in the developing gut and kidneys, which is sufficient to cause aganglionosis in the distal colon, yet not enough to impair kidney development.These mice are sacrificed between P7-P25 because of welfare problems yet giving a time window for analysis of the development of HAEC. Histological analyses revealed that Gfra1hypo/hypo mice had goblet cell hyperplasia and a shift away from acidic mucin production in the distal colon. Goblet cell hyperplasia was first observed at P10, but the shift in mucin profile already appeared at P5. It is not known what causes goblet cells to change their mucin production, but it seems to be the earliest histopathological change in HAEC preceding goblet cell hyperplasia. qPCR-analysis revealed that Muc2, the main secreted mucin that protects epithelium from invading pathogens, was upregulated at both P5 and P10. mRNA levels of Tnfa were also upregulated at P10. The aforementioned changes were not observed in the duodenum where the ENS had developed normally despite the reduction in Gfra1 expression. This indicates that the changes observed in the colon are likely due to the lack of ENS innervation, rather than a direct effect from GDNF-GFRa1-RET signalling itself. Finally, serum analysis indicated that systemic inflammation did not occur from P10-P16, although one Gfra1hypo/hypo animal had high levels of IL6 and TNFa at P14-16. This indicates that inflammation is not an early stage event and it is preceded by goblet cells related changes. In conclusion, changes in goblet cells seems to be earliest histopathological findings preceeding HAEC.
  • Pulkkinen, Nita (2013)
    Amphetamine and its derivatives are widely used as medicines but also abused as psychostimulant drugs. The most important action of amphetamine in the central nervous system is to release dopamine to the extracellular space which leads to enhanced dopaminergic neurotransmission. Amphetamine also releases serotonin and norepinephrine by similar mechanisms and it affects indirectly other neurotransmitter systems too. It still remains partly unsolved how amphetamine exactly releases monoamines but it is known to have multiple sites of action. Amphetamine is a substrate for dopamine transporter (DAT) and it acts as a competitive inhibitor of the transporter reducing uptake of dopamine. Amphetamine enters the cell mainly through DAT and partly by diffusing through the cell membrane. The drug induces changes in DAT leading to reverse transport of dopamine from the cytoplasm into the synaptic cleft through DAT. Amphetamine is also substrate for vesicular monoamine transporter 2 (VMAT2) preventing the uptake of dopamine into storage vesicles and promoting its release from the vesicles to cytoplasm. Additionally, amphetamine inhibits monoamine oxidase (MAO), enzyme which degrades monoamines. It also enhances dopamine synthesis and according to recent studies amphetamine augments exocytotic dopamine release. Drug addiction is a chronic disorder related to structural and functional adaptive changes of neurons, called neuronal plasticity. GDNF (glial cell line-derived neurotrophic factor) is one of the many molecules regulating plasticity. It is especially important to the dopaminergic system and some investigations have suggested that it has potential as a protective agent against addiction. The aim of this study was to investigate how the overexpression of endogenic GDNF affects dopaminergic system and how it changes drug responses. A hypermorphic mouse strain (GDNFh), which is overexpressing physiological GDNF, was used. Their wild-type littermates were used as controls. Using brain microdialysis it was measured how the extracellular dopamine concentration changes in striatum and nucleus accumbens (NAcc) after amphetamine stimulation. Amphetamine was administered straight to the brain through the microdialysis probe. Microdialysis was performed on days 1 and 4, and on days 2 and 3 the mice were given amphetamine intraperitoneally. This was done to find out if the response to amphetamine changed after repeated dosing. In addition to these experiments, the biological activity of three small-molecule GDNF mimetics in intact brains was tested by microdialysis. On the first day amphetamine increased striatal dopamine output more in the heterozygous GDNFh mouse than in the wild-type mice. This stronger reaction to amphetamine may be explained by the enhanced activity of DAT in the GDNFh-het mice leading to higher intracellular amphetamine concentration. Also the striatal dopamine levels are increased in the GDNFh-het. On the fourth day no differences were detected between the genotypes. In the NAcc no significant difference was found between the genotypes. Instead in NAcc amphetamine caused a smaller increase in the dopamine output on day 4 than on day 1 in both genotypes suggesting that tolerance was developed. These results confirm that endogenic GDNF has a remarkable role in the regulation of the dopamine system and hence addiction but further investigations are needed to clarify its versatile actions. The small-molecule GDNF mimetics increased striatal dopamine output thus showing biological activity and encouraging to further investigations.
  • Renko, Juho-Matti (2012)
    Review of the literature: The purpose of the review is to go through what is known about mechanisms of actions of different neurotrophic factors (GDNF, neurturin, CDNF and MANF) and how they are transported within the brain. Neurotrophic factors are endogenous and secreted proteins which have a pivotal role in the development and maintenance of neurons. They support the survival of neurons and they can help them to recover from different injuries. Due to these functions neurotrophic factors might be beneficial for the treatment of neurodegenerative disorders like Parkinson's disease. There are a great deal of studies that clearly show the neuroprotective and neurorestrorative function of GDNF and neurturin on dopaminergic neurons. They are also studied in clinical studies with Parkinson's patients but the results have been partly contradictory. The signalling route of GDNF and neurturin via RET tyrosinekinasereceptor is fairly well known but the other mechanisms of action of these factors needs to be studied further. CDNF and MANF constitute a novel, evolutionarily conserved family of neurotrophic factors. They are shown to have neuroprotective and neurorestrorative actions on dopaminergic neurons both in vitro and in vivo in a rodent model of Parkinson's disease. The mechanisms of action of CDNF and MANF are not quite clear at the moment. There are two different domains in their structure both of which are likely to carry different functions. The N-terminal domains of these proteins are close to saposins, lipid and membrane binding proteins, some of which are shown to have neurotrophic and anti-apoptotic effects. The C-terminal domain of MANF, in turn, is structurally close to the SAP-domain of Ku70-protein which binds Bax in the cytoplasm and thus inhibits apoptosis mediated by Bax. CDNF and MANF might protect neurons both via intracellular mechanisms and extracellularly acting like a secreted neurotrophic factor. CDNF and GDNF are transported retrogradially from striatum to substantia nigra. MANF, unlike the others, is transported from striatum to the frontal cortex. MANF and CDNF are shown to have better diffusion properties in the brain parenchyma than GDNF. Experimental part: We studied, by means of microdialysis, the effects of CDNF, MANF and GDNF on the dopaminergic neurotransmission of naive rats within the striatum. Neurotrophic factors (10 µg) and PBS as a negative control were injected into the left striatum in stereotaxic surgery. After this rats recovered one week before the first mircodialysis. The second mircodialysis was performed three weeks after the surgery. The samples were collected from the left striatum of freely moving rats. During the microdialysis neurotransmission was stimulated by replacing the perfusion solution with hypertonic potassium solution and with amphetamine solution. The concentration of dopamine, DOPAC, HVA and 5-HIAA was measured from the dialysate samples. In vivo TH-activity experiment was carried out for three rats in each group. NSD1015 was injected i.p.after which rats were decapitated and their striatums were dissected. The concentration of L-DOPA, dopamine and metabolites on the treated and untreated hemisphere were analyzed from the tissue samples. The amount of L-DOPA in the striatum after NSD1015-treatment indicates how active TH-enzyme is. There were no significant differences in the concentrations of dopamine and metabolites during the baseline. MANF and CDNF increased the release of dopamine from the nerve terminals compared to GDNF and PBS one week after the surgery. Three weeks after the surgery there was still significant increase in the release of dopamine in MANF group compared to GDNF group. Also the dopamine-DOPAC-turnover was increased significantly in MANF group compared to GDNF and PBS groups one week after the surgery. DOPAC/HVA -ratio was significantly smaller in GDNF group than in other groups one week after the surgery. These findings suggest that MANF potentiates dopaminergic neurotransmission most drasticly. The effects of MANF seem to last longer time than the effects of other neurotrophic factors. CDNF seems to increase the release of dopamine from the nerve terminals as well. The potentiation of dopaminergic neurotransmission could be due to increased biosynthesis of dopamine or due to the potentiation of the function of nerve terminals. In the results of the TH-activity experiment there was a trend according to which L-DOPA is synthesized less after the neurotrophic factor treatment that after the PBS treatment. This suggests that neurotrophic factors might decrease the activity of TH-enzyme.
  • Huynh, Thi Le Hang (2010)
    In the written part of my master -thesis I discuss about GDNF signalling and more specifically how the changes in the GDNF/GFRα1/Ret signaling affect the nigrostriatal dopaminergic neurons in different mutant mice. In the animal models of Parkinson's disease the neuroprotective and neurorestorative effects of exogenous GDNF are very clear which raises hope for use of GDNF in treatment of Parkinson's disease. In intact animals GDNF stimulates the function of nigrostriatal dopaminergic system. Revealing the role of GDNF/GFRα1/Ret signaling in development, maintenance and protection of nigrostriatal dopaminergic system will certainly help in search for treatment of neurodegeneration in Parkinson's disease. In knockout mouse models GDNF/GFRα1/Ret signaling is not crucial for prenatal nigrostriatal dopaminergic neuron development, but it has been shown that it plays an important role in the early postnatal development. Also, it was shown that reduced GDNF/GFRα1/Ret signaling compromises nigrotriatal dopaminergic system in heterozygous GDNF/GFRα1/Ret knockout mice. However the physiological roles of endogenous GDNF and its signalling in the nigrostriatal dopaminergic neurons are not very well understood. In the experimental part of my master -thesis I studied how reduced endogenous GDNF signaling affects the dopaminergic system after 6-OHDA induced neurotoxicity in the conventional heterozygous GDNF mice. Besides that I examined the effects of elevated endogenous GDNF on dopaminergic system of 7 days old so-called GDNF hypermorphs mice. The effects of reduced endogenous GFRα1 levels on dopaminergic system of 20 days old GFRα1 hypomorphs have also been studied. The obtained date showed that mice with the reduced levels of endogenous GDNF are not more susceptible to the 6-OHDA induced neurotoxicity than the wild type littermates. Elevated endogenous GDNF levels did not affect early postnatal development of the nigrostriatal dopaminergic system in GDNF hypermorphs mice as revealed by normal intensity of TH staining in striatum and normal number of TH-positive cells in the substantia nigra pars compacta. Reduced levels of endogenous GFRα1 levels did not affect monoamine levels in the striatum of GFRα1 hypomorph mice.
  • Julku, Ulrika (2014)
    Parkinson's disease is a progressive neurodegenerative disease. The incidence of the disease is 1.5-2 per cent after age 60. Typical symptoms are tremor, rigidity and bradykinesia. At the late stage of the disease patients have psychic disorders, for example dementia, anxiety and depression. Motor impairment is caused by degenerative loss of dopamine cells in nigrostriatal tract. Current treatment of the disease relieves the symptoms but it cannot stop or slow the progress of the disease. Neurotrophic factors and gene therapy have been trialled to improve the treatment of Parkinson's disease and the results have been encouraging. Neurotrophic factors are proteins that regulate actions of neurons. It has been discovered that they are neuroprotective and neurorestorative. The results with glial cell line-derived neurotrophic factor (GDNF) have been encouraging in in vivo studies of Parkinson's disease. There has been variability in success of clinical trials though. GDNF degrades quickly in vivo but overexpression of GDNF in cells can be produced with viral vector adeno-associated virus. Two different forms of GDNF, pre-α-pro-GDNF (α-GDNF) and pre-β-pro-GDNF (β-GDNF), are produced as precursors and they are activated proteolytically. Based on in vitro studies, some differences in secretion of precursors have been discovered. α-GDNF is secreted constitutively and secretion of β-GDNF is dependent on physiological stimulation. Previous in vitro studies have focused on α-GDNF, but β-GDNF might be a better solution for treating Parkinson's disease based on physiological regulation system. Cerebral dopamine neurotrophic factor (CDNF) is recently discovered and less studied than GDNF. It has been discovered that CDNF also has neuroprotective and neurorestorative effects in animal models of Parkinson's disease. The aim of the first part of this study was to discover the neurorestorative effect of single injection of CDNF injected above substantia nigra for rats that received injection of 6-hydroxydopamine (6-OHDA) into medial forebrain bundle. One week later rats received PBS, GDNF or CDNF injection. The degree of the lesion was estimated with apomorphine (0.1 mg/kg s.c.) or d-amphetamine sulphate (2.5 mg/kg) induced rotation test. The rats were perfused nine weeks post-lesion and their brains were sliced. Tyrosine hydroxylase (TH) positive dopamine cells were stained by immunohistochemistry. The amount of TH positive cells in substantia nigra was counted and optical density of TH positive fibres in striatum was measured. The aim of the second part of the study was to research the neuroprotective effect of two different precursors of GDNF, dsAAV1-pre-α-pro-GDNF and dsAAV1-pre-β-pro-GDNF, given with viral vectors. The dopamine cells in nigrostriatal tract were destroyed with a 6-OHDA injection into striatum and viral vectors were injected two weeks later. Rats in control group received injection of dsAAV1-GFP. The degree of the lesion was evaluated with d-amphetamine sulphate (2.5 mg/kg) induced rotation tests and cylinder test. The rats were perfused eight weeks post-lesion and their brains were processed for immunohistochemistry. The results of the study were interesting and supporting previous studies. The success of the neurotrophic factor treatment is dependent on a successful injection of protein or viral vector, and the dose is dependent on the size of the lesion. Neurotrophic factors and gene therapy needs to be studied more before wide clinical usage.
  • Kontti, Arttu (2014)
    Parkinson's disease causes changes in the basal ganglia GABAergic neurotransmission in addition to the well-known dopaminergic changes. These GABAergic modulations may cause somed of the symptoms not responding well to the standard dopaminergic medication. Neurotrophic factors are a group of endogenous proteins showing promise as a future treatment for Parkinson's disease. They are known to have neuroprotective and neurorestorative effects on the dopaminergic cells. Their effects to the GABAergic cells are still mostly unknown. Intrastriatal injection of GDNF to rats caused significantly slower weight gain compared to CDNF, MANF one week after stereotaxic operation (p=0,002 for CDNF vs. GDNF and p<0,001 for MANF vs. GDNF). Difference to the vehicle (phosphate buffered saline) used as a negative control was not statistically significant (p=0,055). Three weeks after the operation the differences between the treatment groups were no longer statistically significant. Because of problems with the separation in analysis, microdialysis samples remain still to be analysed. To help the analysis of GABA in the future we determined the analytical parameters of the analytical apparatus. We also defined differences in probe permeability between 1 mm and 2 mm probes and between old and new batches. GABA analysis was performed with a HPLC-fluorometric detection of o-phtaldialdehyde-derived GABA. Detection limit for old apparatus was 7,2 nM and for new apparatus 6,2 nM in a sample of 15 µl (0,11 pmol and 93 fmol respectively). Quantification limits defined were 22 nM and 19 nM (0,33 pmol and 0,28 pmol) for the old and the new apparatus, respectively. Upper limit of quantification was estimated to be 246 nM (3,7 pmol). Probes had significant differences in permeability between 1 mm and 2 mm probes, as well as between batches. The variance of permeability of 1 mm probes was estimated to be approximately twofold compared to the 2 mm probes. Furthermore the permeability of 1 mm probes varied between batches significantly. An average of permeability of the old batch was 34 % lower than that of a new batch (p<0,001).