Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "blood-brain barrier"

Sort by: Order: Results:

  • Viljakainen, Tuulikki (2019)
    Parkinson’s disease is a progressive neurodegenerative disease, in which dopamine neurons are dying in the nigrostriatal dopaminergic pathway. This causes motor symptoms such as slowness of movement, tremor, and rigidity. In addition, various non-motor symptoms appear. All currently used medicines are symptomatic, and there are no disease modifying treatment available for Parkinson’s disease. Several neurotrophic factors have shown promise in animal models of Parkinson’s disease. One of those is cerebral dopamine neurotrophic factor (CDNF) which has been studied in different animal models, including rodents and non-human primates. CDNF is a secreted protein but it is also localized in endoplasmic reticulum (ER). CDNF has two domains, N-terminal and C-terminal, which may have distinct functions. CDNF can be retained in the ER by the ER retention sequence at the end of the C-terminal domain. The C-terminal domain also has an evolutionarily conserved disulfide bridge which is crucial for the biological activity of CDNF. The exact mechanism of CDNF is still unknown. However, it has been shown that CDNF affects the unfolded protein response (UPR) in the presence of ER stress. Neurotrophic factors do not penetrate blood-brain barrier (BBB), for this reason, they need to be injected directly to the brain. Penetration of the BBB is also a problem in the treatment of many other diseases. Various methods for enhancing the BBB penetration of drugs have been studied. For example, permeability of the BBB can be temporarily increased by focused ultrasound combined with microbubbles. Another possibility is the use of a carrier molecule, which can be transported through BBB via specific transport mechanisms. Furthermore, molecule modification offers many applications to achieve enhanced BBB penetration. In view of peripheral administration, a next generation variant of CDNF (ngCDNF) has been developed. The efficacy of this novel variant after intrastriatal injection is equal to that of CDNF in a 6-hydroxydopamine (6-OHDA) rat model of Parkinson’s disease. Systemic administration could also enable treatment of non-motor symptoms of Parkinson’s disease. The aim of this experiment was to study the effects of subcutaneously injected ngCDNF on rotation behaviour, and nigrostriatal TH-positive cells in rats with 6-OHDA lesions. 6-OHDA was injected unilaterally to three different sites in the striatum. Two weeks later, the lesion size was estimated, via amphetamine- induced rotation test. ngCDNF, at two dose levels, was injected twice weekly for three weeks. Amphetamine-induced rotation test was assessed every other week, until week 12. At the end, optical density of tyrosine hydroxylase (TH) was measured from sections of the striatum, and TH positive cells in the substantia nigra were counted. In addition, the effect of ngCDNF on anxiety and depression like behaviour, learning, and locomotor activity were studied at three different levels in naïve mice. Behaviour was analyzed by open field test, forced swim test, and fear conditioning test. The ngCDNF did not seem to have clear effect on rats’ behaviour or TH positive cells and fibers compared to the control group, but positive tendency was found in the group with lower dose. The reduced efficacy of ngCDNF,via subcutaneous administration, is likely due to rapid metabolism and insufficient entry of the active form to the brain. In naïve mice, ngCDNF did not reduce anxiety-like behaviour and did not affect locomotor activity after subcutaneous injections. This result supports previous findings, which suggest that the effects of CDNF are specific to the toxin treated cells and CDNF has no effect in naïve animals.
  • Partti, Susanna (2014)
    Blood-brain barrier (BBB) is a physical barrier between the blood and the brain. BBB restricts drugs transport from blood stream to the brain, which sets challenges in drug delivery to the brain. Nanoparticles can be utilized in drug delivery to the central nervous system (CNS). Nanoparticles are internalized via endocytosis. However it remains unknown which endocytic pathways are active in brain endothelial cells. The characterization of BBB cells would help light on the exact mechanism of nanoparticle delivery into the brain, which would enable the design of targeted nanoparticles to deliver drugs to the CNS. In present study we characterized human brain endothelial cells, hCMEC/D3, which are widely utilized as BBB in vitro model. As brain endothelial cells are polarized in vivo, the aim of the study was to demonstrate the cell polarization of hCMEC/D3 cells and to study the activity and functionality of different endocytic pathways as a function of cell polarization. The level of cell polarization in cells grown on transwell permeable supports was characterized at multiple timepoints with four different methods: transepithelial electrical resistance (TEER) measurement, lucifer yellow permeability assay, alkaline phosphatase expression and ZO-1 expression. To characterize hCMEC/D3 cells for the presence of specific endocytic pathways, proteins involved into each pathway were selected. Expression of these proteins at mRNA level was assessed by quantitative real-time polymerase chain reaction (qRT-PCR). For clathrin-mediated endocytosis, mRNA level of CHC protein was further correlated with the protein level of this protein, and the activity of clathrin-mediated endocytosis was analyzed by fluorescence activated cell sorting (FACS). Our results showed that hCMEC/D3 cells are best polarized after growing on transwell permeable support for 7 days. At the later timepoints, the cell polarization started to decrease, probably due to multilayer formation. We concluded that measuring TEER alone is not a reliable method to determine polarization status of the cells. mRNA levels of endocytosis-related proteins did not change remarkably as a function of cell polarization. In case of clathrin-mediated endocytosis, there was lack of correlation between CHC mRNA and protein level, but good correlation between mRNA level and activity of the pathway.
  • Salovuori, Noora (2019)
    Background and objectives: Cells secrete extracellular vesicles (EV) and it has been found that cells communicate via EVs. EVs are liposome-like vesicles. Membrane is consisting of a lipid bilayer and hydrophilic moiety is inside the vesicle. It has been found that EVs carry e.g. nucleic acids, lipids and proteins. The aim of this master thesis was to determine whether EVs can transport non-coding RNA (siRNA) into the central nervous system through the blood-brain barrier. In the literature review, investigated methods which has been used to load siRNA into the EVs and how EVs are transported through the blood-brain barrier. The aim of the experimental part was to produce and isolate EVs and to load FAM-labeled dsDNA and siRNA into EVs by physical methods such as sonication and electroporation. Fluorescence measurements were taken to demonstrate FAM-labeled DNA loading into EVs and the functionality of the siRNA-loaded EVs was measured by measuring the expression level of the gapdh gene. Methods: Extracellular vesicles were produced in ARPE-19 and PC-3 cells. EVs were isolated from the cell culture medium by two-step differential centrifugation (DC) and further purified by gradient centrifugation (GC) by using the OptiPrep™-reagent. OptiPrep™-reagent was purified by Amicon 10kDa filtration tubes. The average particle size and size distribution of the isolated EVs were determined by NTA analysis, protein concentration was measured by colorimetric BCA method and EVs were characterized by Western blot method using HSP70 and CD9 antibodies. EVs were loaded with 21 bp length FAM-labeled dsDNA or siRNA by sonication or electroporation. Free nucleic acid and OptiPrep™-reagent were purified from EVs by the size-exclusion chromatography with Sephacryl (S-300) column. Loading efficient of the EVs were studied by measuring the fluorescence (ex 485 nm, em 520 nm) and qPCR method was used to demonstrate the functionality of the siRNA loaded EVs. In qPCR, the expression level of the gapdh gene was measured in dividing ARPE-19 cells. Results: DC and GC purified ARPE-19 and PC-3 EVs had an average particle size of about 140 nm and were successfully characterized by Western blot method. PC-3 EVs were produced in the bioreactor and the yields were enough for loading experiments. ARPE-19 cells produced only small amounts of EVs in culture flasks. The size-exclusion chromatography was a good method to purification free nucleic acids from EVs. The sonication method did not cause EVs to be degradation under the conditions used. Based on fluorescence measurement, FAM-labeled dsDNA could not be loaded into EVs. The functionality of siRNA-loaded EVs could not be demonstrated in ARPE-19 cell experiments. After electroporation large number of EVs were lost and this method of loading siRNA into EVs did not proved to be suitable. Conclusions: ARPE-19 EVs must be produced in the bioreactor to produce enough EVs for loading experiments. The EV purification protocol should be further optimized since the recovery-% of EVs were low after several purification steps. The size-exclusion chromatography is suitable for the purification of the free siRNA from EVs, but the chromatography method needs further optimization and miniaturization. Loaded EVs should be produced by aseptically or alternatively sterilized prior to ARPE-19 cell assay. Physical loading method, such as sonication, can be scaled to larger scale. Sonication method should be optimized e.g. by experimenting with higher temperatures and longer sonication times. The probe sonicator should be tested instead of the water bath sonicator. According to the literature review, the use of extracellular vesicles as carriers for biomolecule delivery into the central nervous system seems to be promising.