Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "huumausaineet"

Sort by: Order: Results:

  • Flink, Anu (2011)
    Here, we demonstrate the application of desorption atmospheric pressure photoionization (DAPPI) as a screening method at the Criminal Laboratory of the Finnish National Bureau of Investigation for samples confiscated by the Finnish criminal police. DAPPI is a fast mass spectrometric technique to analysis compounds directly from the sample surface in ambient atmosphere. In DAPPI, the sample is thermally desorbed from the sample surface using hot solvent vapor, after which the analytes are ionised in the gas-phase by photon-initiated gas-phase reactions. DAPPI was applied to the direct analysis of confiscated drugs, anabolic steroids and explosives of various matrices without any sample preparation. Confiscated drug samples included e.g. tablets, powders, herbal mixtures, herbal products [Catha edulis (khat) leaves, opium, Cannabis sativa, Psilocybe mushrooms] and ampules and tablets containing anabolic steroids. Powders were sprinkled on a 2-sided tape on a microscope slide, after which the excess powder was shaken away from the tape surface. Liquid samples were analysed from a kitchen paper, after application of 1 Äl of oil from ampules. Other samples were analysed by simply placing them on the DAPPI sampling stage and by directing the solvent plume on the sample surface. DAPPI proved to be a fast and specific analysis technique to this type of forensic analysis. DAPPI does not require any sample preparation, which therefore is well suited for fast forensic analysis, especially for plant samples and oily anabolic steroids, which are considered very challenging with conventional methods. Contamination of the mass spectrometer could be avoided by adjustment of the distance of the sample from the mass spectrometer inlet. Memory effects or contamination of the MS instrument were not observed even after several weeks of DAPPI measurements. DAPPI was also used for trace detection of the explosives trinitrotoluene (TNT), nitroglycol (NK), nitroglycerine (NG), penitrit (PETN), cyclonite (RDX), octogen (HMX) and picric acid. These organic explosives are nitrated compounds, which are divided based on their chemical structure into nitroaromatics (TNT and picric acid), nitroamines (RDX and HMX) and nitrate esters (PETN, NG and NK). Explosive dilutions were analysed with DAPPI from a polymer surface [poly(methyl methacrylate), PMMA] after application and drying of 1 Äl of sample. Also forensic analysis of post-blast residues from different matrices were done. DAPPI was effective in the ionisation of nitroamines and nitrate esters as their adducts with anions such as nitrate, acetate, formate and acetate. TNT used to form negative molecular ions through electron capture and picric acid formed deprotonated molecules through proton transfer. A DAPPI-MS method was developed for all explosives but the identification of the very low concentration explosive traces from wild variety of matrices proved to be difficult.
  • Hossi, Heidi (2016)
    The abuse of drugs is monitored by different authorities and health care. World Anti-Doping Agency (WADA) prohibits the use of doping substances and methods in- and/or out-of-competition. WADA has created strict instructions for Anti-Doping laboratories for analyzing different substances from biological samples. The aim of this study was to develop liquid chromatographic-mass spectrometric (LC-MS/MS) screening analysis for the detection in urine of drugs of abuse. The basis of study was 20 different substances which had different molecular weights, logP and pH values. The purpose was to create the basis of the method where is easy to add new analytes in further studies. Almost all substances chosen in this study were doping substances and the guidelines for the method were created by WADA. The sample pretreatment was pursued to be as generic as possible for plenitude of analytes and easy to perform. The sample pretreatment included two liquid-liquid extraction steps and enzymatic hydrolysis. The LC-MS/MS method worked well for many analytes with some exceptions. Some analytes didn't fit for the sample pretreatment and some didn't give strong enough signal in desired detection level. The gradient of LC-method can be limiting factor when adding new analytes to the method. Especially very lipophilic and polar analytes may cause difficulties. Carry over caused some problems in analyses. As a result it may lead to new sample treatment and LC-MSanalysis for the same batch.