Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "membrane filtration"

Sort by: Order: Results:

  • Virtanen, Sonja (2020)
    Parenteral products are sterile products that are administered as injection, infusion or implantation. Administration of the contaminated parenteral product can cause severe consequences such as sepsis meningitis and even death. Most of the parenteral products used at the hospitals needs to be compounded (e.g. dissolved, diluted) before administration. Whenever possible, compounding should be done in biological safety cabinet using aseptic techniques. According to previous studies errors in aseptic techniques are quite common. Aim of this study was to compare three different environments as compounding area and their effect to the sterility of the compounded parenteral product. Based on the results of this study, changes to the protocols of the hospital could be made. Altogether 220 samples were compounded at two pediatric wards at HUS Helsinki University Hospital. Six volunteers (one pharmacist and five nurses) participated from both wards and each compounded 18 samples in three different environments (patient room, medicine room, biological safety cabinet). The samples were tested for the sterility by membrane filtration within 4 hours or after 24 hours of storage in the refrigerator. The investigator used an observation form to observe the compounding procedures. Environmental monitoring (settle plates) and monitoring of personnel (glove samples) were conducted. Almost all compounded samples (99%, n=213/215) were sterile. There were no significant differences in the contamination rate of the compounded samples between different environments. Five of the collected samples were excluded, because they were contaminated during the sterility test. According to observations, aseptic techniques were well followed. However, disinfection of the septum of the medicine bottle, hand hygiene and cleaning of the compounding area were observed to be deficiently completed. Even though there were lot of variation in the environmental and personnel monitoring the results were quite good. Results from the environmental monitoring were compared to the recommended limits of EU GMP for clean areas. One compounded sample was contaminated with Diezia maris and Corynebacterium mycetoides but the contaminants from the other contaminated sample could not be identified. Aseptic techniques were mainly well followed, however compounding should be done in the biological safety cabinet, since the environmental monitoring results show that the biological safety cabinet was only environment which was within the recommendation limits of the EU GMP for the compounding area of parenteral products. Protocols of the hospital could be changed, since there was no correlation between higher contamination rate of settle plates or compounded samples and not wearing mask and hair cover while compounding in the biological safety cabinet.