Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "metabolism"

Sort by: Order: Results:

  • Mankila, Anja; Mankila, Anja (2022)
    Cardiovascular diseases are the most common causes of mortality worldwide. More adequate human-based models would be needed for the purposes of disease modeling and drug development. One of the most promising fields of in vitro modeling is the use of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs). A central problem of hPSC-CMs is their immature or fetal-like phenotype compared to adult human cardiomyocytes regarding many structural, functional, and metabolic properties. The development of metabolic properties is considered to be a central driver of cardiomyocyte maturation. One practicable way to promote the metabolic maturation of hPSC-CMs in vitro is the use of various biochemical cues in the cell culturing media. The topic of this study was the metabolic maturation of hPSC-CMs. The research questions were: What biochemical cues have been suggested to be involved in the hPSC-CM maturation in vitro? What signaling pathways connected to the biochemical cues have been explored in the context of the maturation of hPSC-CM? What experimental results have been achieved on the effects of the biochemical cues and the involvement of the signaling pathways? The study was conducted as a systematic review with the database Scopus (Elsevier). The final set of materials consisted of 46 original research articles published in peer-reviewed journals in English in the years 2013–2022. Out of the materials, 11 articles (24%) were characteristically longitudinal studies. They indicated that the pathways leading to metabolic changes such as PPARs (peroxisome proliferator-activated receptors) and PGC-1α (peroxisome proliferator-activated receptor γ coactivator 1α) are activated already in early stages. In 12 articles (26%), pharmacological agents were used to target the metabolic pathways, and in 8 articles (17%) techniques affecting the gene expression were utilized. The most recent studies involved ever more frequently combinations of different techniques. Considering the use of biochemical cues, the trend has been to favor fatty acids, thyroid hormone and dexamethasone over glucose, insulin and insulin-like growth factor. Some cues such as retinoic acid and neuregulin 1 have been tested only in single experiments. In addition to the nuclear receptor mediated pathways, the energy sensors AMPK (AMP-activated protein kinase) and mTOR (mechanistic target of rapamycin), the oxygen sensor HIF-1α (hypoxia-inducible factor 1α), and the microRNAs turned out to be central.
  • Parviainen, Heli (2020)
    Statins are a commonly used group of drugs that reduce the cholesterol levels in blood and have been shown to reduce cardiovascular morbidity and mortality. However, a considerable percentage of patients experience adverse effects during statin treatment. Statin adverse effects have been associated with genetic polymorphisms and drug-drug interactions that affect the elimination and active transport of these drugs. A more comprehensive knowledge of statin metabolism may be a step towards better management of statin treatments. Statin metabolism both in vivo and in vitro has been subject of study for years. In vitro incubation conditions may considerably affect the observed clearance, and results obtained with different methods or in different laboratories may not be directly comparable to each other. No single in vitro study on a wide panel of statins has previously been conducted. Six statins and some of their metabolites, fourteen compounds in total, were included in the study. The intrinsic clearance (CLint) of these molecules was investigated in vitro on human liver microsomes (HLM) and a panel of eleven cytochrome P450 (CYP) enzymes recombinantly expressed in E. coli. Observed CLint values for each compound in HLM and for each compound-CYP pair with observed depletion were calculated. The percentual contributions of each CYP enzyme to the metabolism of the compounds was calculated. The results obtained with recombinant CYP enzymes (rcCYP) were complemented with studies on HLM with specific chemical inhibitors of CYP enzymes. In this study the metabolism of statin lactones seemed to be faster than the metabolism of the corresponding statin acids. Atorvastatin lactone, 2-hydroxy atorvastatin lactone, 4-hydroxy atorvastatin lactone and simvastatin were extensively metabolized. Atorvastatin, 2-hydroxy atorvastatin, 3R,5S-fluvastatin, 3S,5R-fluvastatin, pitavastatin lactone and simvastatin acid showed intermediate metabolism. 4-hydroxy atorvastatin, pitavastatin, pravastatin and rosuvastatin rates of metabolism were below quantification limit. CYP3A4 had a major role in the metabolism of atorvastatin and its metabolites, simvastatin and simvastatin acid. CYP3A4 also had activity towards pitavastatin lactone. CYP2C9 had a high activity towards both 3R,5S-fluvastatin and 3S,5R-fluvastatin. CYP2D6 may play a part in the metabolism of pitavastatin lactone. CYP2C8 may have some activity towards simvastatin and simvastatin acid. The data is mostly in agreement with previous in vitro and in vivo studies regarding both the metabolism rate of statins and the contributions by different CYP enzymes to the metabolism of statins. Due to the screening nature of the study and some methodological constraints, these data should be considered as preliminary and require confirmation in further studies.
  • Tervahauta, Tuomas (2015)
    Prodrugs are pharmacologically inactive molecules which undergo metabolic bioactivation in vivo to form pharmaceutically active agents. Prodrugs have been designed to improve so called drug-like properties of active parent compounds (APC) i.e. to increase solubility or absorption and to reduce first-pass metabolism etc. In this master's thesis the goal was to establish non-cell-based in vitro methods to study prodrug bioactivation. Four commercially available prodrugs (bambuterol, olmesartan medoxomil (OM), candesartan cilexetil (CC) and famciclovir) were used as test compounds. The prodrugs were incubated in liver and intestinal S9 fractions and blood plasma to study in vitro bioactivation of these prodrugs. Other metabolism of the prodrug and APC (nonproductive metabolism) was studied by comparing incubation with and without cofactors of metabolizing enzymes. Species differences was studied using human, rat and dog matrices. Prodrug concentrations were quantified from the incubation samples using liquid chromatography- tandem mass spectrometry (LC-MSMS) methods developed for this study. Additionally the effect of promoiety on passive permeability was studied with parallel artificial membrane permeability assay (PAMPA). All of the studied prodrugs produced at least low concentrations of APC in one or more incubations. Terbutaline (APC of bambuterol) formation was observed in human plasma and was concentration dependent which is consisted with the literature. Olmesartan and candesartan were formed in S9 fraction in high rate, but not in buffer: indicating enzyme mediated hydrolysis. However, based on literature CC hydrolysis was not expected to occur in intestinal S9 fractions. Penciclovir (APC of famciclovir) was formed only in presence of human or rat liver S9 fraction which was in line with the pre-existing literature. With the method used the nonproductive metabolism could not be estimated. In PAMPA bambuterol, famciclovir and OM had higher permeability than corresponding APCs whereas CC was only more permeable than candesartan in pH 7.4. The in vitro incubation used in this study can be used for screening prodrugs. However both low and high activation rates were observed thus the clinically relevant in vivo APC formation can be achieved with both high and low bioactivation in vitro. Studying the rate of prodrug formation alone estimations about clinically relevant bioactivation rates cannot be concluded. No clear signs of nonproductive could be seen with the prodrugs studied with current method. For the estimation of nonproductive metabolism, metabolite screening studies would need to be developed and conducted parallel to studies prescribed in this master's thesis.