Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "sumukuivaus"

Sort by: Order: Results:

  • Autzen Virtanen, Anja (2023)
    Poorly water-soluble drugs are challenging to formulate as solid oral dosage forms because of their inadequate solubility in the gastro-intestinal tract. Amorphous solid dispersions (ASDs) are a proven method of increasing the oral bioavailability of poorly water-soluble drugs through drug supersaturation. Downstream processing of ASDs into oral tablets has gained academic interest in recent years. However, minitablets, which are tablets smaller than 4 mm in size, have not received the same level of attention. Minitablets have been cited as a promising dosage form for children, the elderly and in veterinary use because of their good compliance, flexible dosing, and ease of swallowing. In this work, 15 different blends of microcrystalline cellulose and lactose have been characterized for their suitability in the formulation of an ASD of spray-dried poorly soluble indomethacin in PVP K 29-32 or HPMCAS MF as minitablets. Minitablets were compressed at the compression forces ~1000 N and ~1500 N. The flowability of the blends were evaluated based on the Carr’s indices, Hausner ratios and angles of repose. From the most promising blends, 3.0 mm placebo minitablets were manufactured. A mixing test using colored beetroot powder was used to determine the optimal mixing time. The finished tablets were tested for their uniformity of mass, crushing strength, height, and disintegration. Based on their Carr’s indices and Hausner ratios, Vivapur 105, Vivapur 200, Pharmatose 200M and Pharmatose 80M had the best flowabilities. Placebo minitablets were successfully manufactured from blends of these excipients except for the 1:1 ratio of Vivapur 105/Pharmatose 80M. The mixing test indicated that the optimal mixing time is 20 to 25 minutes. The mass variation for all placebo batches except the 1:3 ratio of Vivapur 105/Pharmatose 80M was less than 10 percent from the average mass and most batches therefore fulfilled the uniformity of mass requirement of the European Pharmacopoeia. For five of the batches, the variation was within 2.80 percent. The average crushing strengths were between 32.4 N and 79.7 N and increased with increasing compression force. All batches of placebo minitablets disintegrated within 6 to 19 seconds on average except the 1:3 ratio of Vivapur 105/Pharmatose 80M which took 90 seconds to disintegrate. Minitablets filled in capsules disintegrated within 124 to 167 seconds on average except for the previously mentioned slower disintegrating batch which disintegrated in 477 seconds. All placebo minitablets, individual or loaded into capsules disintegrated within 15 minutes thereby fulfilling the requirement of the European Pharmacopeia. When considering the results obtained for placebo minitablets, the 3:1 ratio blend of Vivapur 200/Pharmatose 200M with 0.5 % (w/w) magnesium stearate was found to be the most promising candidate for ASD formulation. This formulation was subsequently used as the basis for the manufacture of 3.0 mm minitablets containing 6.22 % (w/w) of a spray-dried dispersion of indomethacin and PVP K 29-32. Except for one outlier, the mass variation of these minitablets fell within 2.37 % of the average mass, thereby fulfilling the requirement of the European Pharmacopoeia. Single indomethacin-PVP minitablets disintegrated within 6 minutes and 38 seconds, and capsules containing twelve minitablets disintegrated within 10 minutes and 37 seconds, which also is accordance with the pharmacopoeia. At 80.3 to 80.4 N the crushing strength was at the upper end of the targeted range, but still adequate. Thus, the formulation developed in this study appears promising for the manufacture of minitablets containing 6.22 % of an amorphous indomethacin-PVP dispersion. This study demonstrated that minitablets could be manufactured from a spray-dried solid dispersion despite its poor flowability.
  • Kolu, Anna-Maija (2013)
    Spray drying is one way to dry protein medicines and it has many advantages compared to other drying methods, for example it is a fast process. In spray drying high temperature and mechanical stress can inactivate the protein. Disaccharides are generally used as protective agents of protein in spray drying because they have an ability to protect the structure of the protein during drying and storage. Aim of this research was to study the stability of the protein during spray drying and storage by using β-galactosidace as a model protein. Aim was also to characterize the physical properties of trehalose and melibiose and to study how well they protect the protein. Some of the central matters to be examined were the glass transition temperature, crystallinity, water activity, yield of the spray dried powder and protein activity. Especially studying the properties of melibiose in spray drying was important because it has not been used before. The study also included the optimization of the process parameters to be suitable for the product. Trehalose and melibiose transformed to an amorphous form during spray drying. Both XRPD and DSC showed an amorfous form. Trehalose and melibiose proved to be good protective agents for the protein during spray drying and storatge probably because they remained their amorphous structure. β-galactosidase remained activity very well. Optimizing of the process parameters was successful because protein remained its activity and still the powder was quite dry and yield was good. The changes in the structure of the protein were studied with FT-IR but the amount of the protein was too small. Problems caused by the spray drier may have an effect to the results, but on the other hand the spray dryer was made to work optimally.
  • Pietiläinen, Johannes (2013)
    The aim of this study was to obtain basic knowledge of the applicability of a Büchi Spray dryer B-290 for inhalation particle production and its process parameters effects on particle physicochemical properties. The possibility to anneal the particles where also studied. The greater goal was to provide some information about the solutes' crystallization tendency related to chosen process parameters. Two active pharmaceutical ingredients, salbutamol sulphate and budesonide, where chosen as model substances. Spray drying is a suspended particle processing system which is widely applied and it has been in use from the 1940s. The processed pumpable liquid which contains chosen substances is dispersed into droplets and dried to produce particles that are later collected. Spray dryer is used to process food, biochemical and pharmaceutical substances. In the field of inhalation particle processing, however, it is rather a new technology. This is because of the quality limitations of inhalable particles and the challenges in process optimization. From the many process parameters the concentration of the solid substances, inlet temperature and concentration of organic solvent were chosen as variables for the conducted experiments due to their apparent effects on product quality and especially on solid state. A rudimentary box-annealing system was studied for spray dried substances to verify their solid state transformation tendencies. Salbutamol sulphate was annealed in a box with 65% relative humidity and budesonide in 74 % and 100% relative ethanol activities. Particle size and size distributions were measured with laser diffraction apparatus, crystallinity was analyzed with powder x-ray diffraction and particle morphology was studied with scanning electron microscope. Salbutamol sulphate turned out to be amorphous and budesonide crystalline when spray dried. Both products were within the inhalable size range (1-5µm). Under the current setup the solid state quality of the products was found dependent on the concentration of the solid substances to some extent. Spray dried amorphous salbutamol sulphate was successfully anneaed to a crystalline material and partly crystalline budesonide was annealed to a more crystalline state. Further studies are needed to utilize the full potential spray drying has to offer for inhalation formulating. The kinetics of the annealing procedure and its dependency on the method used still remain largely unexplored.