Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "suorapuristus"

Sort by: Order: Results:

  • Autzen Virtanen, Anja (2023)
    Poorly water-soluble drugs are challenging to formulate as solid oral dosage forms because of their inadequate solubility in the gastro-intestinal tract. Amorphous solid dispersions (ASDs) are a proven method of increasing the oral bioavailability of poorly water-soluble drugs through drug supersaturation. Downstream processing of ASDs into oral tablets has gained academic interest in recent years. However, minitablets, which are tablets smaller than 4 mm in size, have not received the same level of attention. Minitablets have been cited as a promising dosage form for children, the elderly and in veterinary use because of their good compliance, flexible dosing, and ease of swallowing. In this work, 15 different blends of microcrystalline cellulose and lactose have been characterized for their suitability in the formulation of an ASD of spray-dried poorly soluble indomethacin in PVP K 29-32 or HPMCAS MF as minitablets. Minitablets were compressed at the compression forces ~1000 N and ~1500 N. The flowability of the blends were evaluated based on the Carr’s indices, Hausner ratios and angles of repose. From the most promising blends, 3.0 mm placebo minitablets were manufactured. A mixing test using colored beetroot powder was used to determine the optimal mixing time. The finished tablets were tested for their uniformity of mass, crushing strength, height, and disintegration. Based on their Carr’s indices and Hausner ratios, Vivapur 105, Vivapur 200, Pharmatose 200M and Pharmatose 80M had the best flowabilities. Placebo minitablets were successfully manufactured from blends of these excipients except for the 1:1 ratio of Vivapur 105/Pharmatose 80M. The mixing test indicated that the optimal mixing time is 20 to 25 minutes. The mass variation for all placebo batches except the 1:3 ratio of Vivapur 105/Pharmatose 80M was less than 10 percent from the average mass and most batches therefore fulfilled the uniformity of mass requirement of the European Pharmacopoeia. For five of the batches, the variation was within 2.80 percent. The average crushing strengths were between 32.4 N and 79.7 N and increased with increasing compression force. All batches of placebo minitablets disintegrated within 6 to 19 seconds on average except the 1:3 ratio of Vivapur 105/Pharmatose 80M which took 90 seconds to disintegrate. Minitablets filled in capsules disintegrated within 124 to 167 seconds on average except for the previously mentioned slower disintegrating batch which disintegrated in 477 seconds. All placebo minitablets, individual or loaded into capsules disintegrated within 15 minutes thereby fulfilling the requirement of the European Pharmacopeia. When considering the results obtained for placebo minitablets, the 3:1 ratio blend of Vivapur 200/Pharmatose 200M with 0.5 % (w/w) magnesium stearate was found to be the most promising candidate for ASD formulation. This formulation was subsequently used as the basis for the manufacture of 3.0 mm minitablets containing 6.22 % (w/w) of a spray-dried dispersion of indomethacin and PVP K 29-32. Except for one outlier, the mass variation of these minitablets fell within 2.37 % of the average mass, thereby fulfilling the requirement of the European Pharmacopoeia. Single indomethacin-PVP minitablets disintegrated within 6 minutes and 38 seconds, and capsules containing twelve minitablets disintegrated within 10 minutes and 37 seconds, which also is accordance with the pharmacopoeia. At 80.3 to 80.4 N the crushing strength was at the upper end of the targeted range, but still adequate. Thus, the formulation developed in this study appears promising for the manufacture of minitablets containing 6.22 % of an amorphous indomethacin-PVP dispersion. This study demonstrated that minitablets could be manufactured from a spray-dried solid dispersion despite its poor flowability.
  • Petäjäsuvanto, Piia (2023)
    Microcrystalline cellulose is a compactable, versatile, and popular excipient in tableting. Microcrystalline cellulose is produced using acid hydrolysis where most of the amorphous areas are removed and the crystalline part is left. Particle size affects most on the functionality of microcrystalline cellulose and that can be altered by changing the duration of acid hydrolysis or the drying method. The aim of this Master’s thesis was to compare new microcrystalline materials produced using energy efficient methods, to commercial Avicel-powders. The used formulation consisted of microcrystalline cellulose, hydroxypropyl methylcellulose, magnesium stearate and dried colloidal silicon dioxide. Due to the small particle size of AaltoCell™ samples it was not possible to use it for direct compaction, but with wet granulation this was successful. The tablets were tested by the standards of European pharmacopoeia and the tablets from wet granulated Avicel PH-101, AaltoCell™ sample B and C passed all the tests. Probably the problem with the rejected formulations was poor flowability, which caused poor reproducibility in the experiments with direct compressed tablets. The wet granulated Avicel PH-101 produced the best tablets with the used formulation.
  • Ainonen, Aleksi (2020)
    Tiivistelmä/Referat – Abstract Background: Biotin is marketed specifically for its hair and nail growth-promoting effects, and its use has become more common in recent years. High doses of 100 mg biotin have also been used to treat MS. There are no high-dose oral products on the Finnish pharmaceutical market. Biotin 100 mg tablets are not available on the global pharmaceutical market either. The University Pharmacy manufactures 100 mg biotin capsules for hospital use. Manual manufacturing of biotin capsules is a resource-intensive process. The physicotechnical properties of biotin such as crystal properties, flowability, hygroscopicity, true density and compressibility properties have not been previously published in the literature. Objectives: The aim of the thesis work was to investigate whether high-dose biotin tablets can be manufactured as an industrial-scale process. To support product development decision-making, the aim of the master's thesis was also to explore the physicotechnical properties of biotin. The main goal was to develop a method for the direct compression of biotin tablets, but also to study the applicability of the wet granulation method. Methods: The crystal form of the raw materials was examined by X-ray powder diffractometer, particle size and particle size distribution by laser velocimeter, and compression behavior by tabletability tests as well as Heckel analysis. The flowability of the raw materials was studied by bulk and tapped density measurements. The production of biotin tablets was studied with six test batches, two of which were high shear wet granulated and four were direct compression processes. The tablets were subjected to European Pharmacopoeia quality tests such as friability, disintegration, and dissolution tests. Results: The particle size distribution of the biotin grade used in the tablets was wide, with an average particle size of 58 μm. Biotin crystals are flaky in shape. Biotin used was the α-crystalline form and its crystalline form did not change as a result of high shear wet granulation. The flow of the biotin grade was extremely poor. Biotin was not found to be particularly hygroscopic. Biotin is brittle, and when compressed, it forms by fragmenting. Pure biotin cannot be compressed into a stable tablet, as even tablets made with high compression forces will form a lid from which the tablet will easily crumble. Biotin sticks to tablet machine’s punches and causes problems in the ejection phase due to high frictional forces. Test batches of the high shear wet granulation process were successful on both eccentric and rotary tablet machine. Two batches of direct compression tests performed on rotary tablet machines had to be stopped after the powder mass got stuck in tablet machine’s hopper. Biotin tablet’s dissolution was slow for all the manufactured batches, with an average of 63-73 % biotin dissolution at 45 min time point. Conclusions: Main property to be optimized for biotin tablet formulations proved to be mass flowability. High shear wet granulation improved significantly flowability. Weight variance of the tablets in the wet granulation batches was also very small. Biotin’s slow dissolution from the tablets was another significant challenge for all the test batches. Further development of biotin tablets should therefore focus on investigating, which measures accelerate biotin tablet’s dissolution. Product development would particularly benefit from the development of a more efficient, ultra-high performance liquid chromatography method for dose analysis of biotin tablets. Wet granulation test batches should be manufactured at different process parameter levels with different excipients and excipient concentrations. Design of experiments statistical approach should be utilized for these further studies so that factor interactions could be detected, and the manufacturing process and drug product could be efficiently optimized.