dc.date.accessioned |
2014-02-26T08:13:52Z |
und |
dc.date.accessioned |
2017-10-24T12:21:24Z |
|
dc.date.available |
2014-02-26T08:13:52Z |
und |
dc.date.available |
2017-10-24T12:21:24Z |
|
dc.date.issued |
2014-02-26T08:13:52Z |
|
dc.identifier.uri |
http://radr.hulib.helsinki.fi/handle/10138.1/3522 |
und |
dc.identifier.uri |
http://hdl.handle.net/10138.1/3522 |
|
dc.title |
Elliptisen osittaisdifferentiaaliyhtälön heikon ratkaisun säännöllisyys |
fi |
ethesis.discipline |
Mathematics |
en |
ethesis.discipline |
Matematiikka |
fi |
ethesis.discipline |
Matematik |
sv |
ethesis.discipline.URI |
http://data.hulib.helsinki.fi/id/44bc4f03-6035-4697-993b-cfc4cea667eb |
|
ethesis.department.URI |
http://data.hulib.helsinki.fi/id/61364eb4-647a-40e2-8539-11c5c0af8dc2 |
|
ethesis.department |
Institutionen för matematik och statistik |
sv |
ethesis.department |
Department of Mathematics and Statistics |
en |
ethesis.department |
Matematiikan ja tilastotieteen laitos |
fi |
ethesis.faculty |
Matematisk-naturvetenskapliga fakulteten |
sv |
ethesis.faculty |
Matemaattis-luonnontieteellinen tiedekunta |
fi |
ethesis.faculty |
Faculty of Science |
en |
ethesis.faculty.URI |
http://data.hulib.helsinki.fi/id/8d59209f-6614-4edd-9744-1ebdaf1d13ca |
|
ethesis.university.URI |
http://data.hulib.helsinki.fi/id/50ae46d8-7ba9-4821-877c-c994c78b0d97 |
|
ethesis.university |
Helsingfors universitet |
sv |
ethesis.university |
University of Helsinki |
en |
ethesis.university |
Helsingin yliopisto |
fi |
dct.creator |
Tevanlinna, Aapo Antero |
|
dct.issued |
2014 |
|
dct.language.ISO639-2 |
fin |
|
dct.abstract |
Elliptisillä osittaisdifferentiaaliyhtälöillä on tärkeä rooli eri ilmiöiden mallinnuksessa. Klassisesti ajatellen ilmiötä mallintavan differentiaaliyhtälön ratkaisun on vaadittu olevan klassisesti derivoituva. Tästä vaatimuksesta voidaan kuitenkin luopua. Ratkaisun kasite yleistetään Lp-avaruuksien, tarkemmin Sobolev-avaruuksien, teorioiden avulla. Yleistetylle ratkaisulle käytetään nimitystä heikko ratkaisu.
Luvussa 1 käsitellään Sobolev-avaruudet, jotka tarjoavat pohjan heikkojen ratkaisujen käsitteelle. Painopiste Sobolev-avaruuksien teoriassa on upotuslauseissa, joilla osoitetaan elliptisen osittaisdifferentiaaliyhtälön määrittävän operaattorin spektri diskreetiksi. Lisäksi upotuslauseita voi käyttää osoittamaan heikon ratkaisun klassinen derivoituvuus tietyissä tapauksissa.
Luvussa 2 esitellään miten elliptiset osittaisdifferentiaaliyhtälöiden ratkaisun käsite saadaan yleistettyä. Sen jälkeen osoitetaan Hilbert-avaruuksien teorian avulla, että heikkoja ratkaisuja on olemassa. Lopuksi tutkitaan heikkojen ratkaisujen säännöllisyyttä ja klassista derivoituvuutta riippuen annetun osttaisdifferentiaaliyhtälöprobleeman alkuasetelmista. |
fi |
dct.language |
fi |
|
ethesis.language.URI |
http://data.hulib.helsinki.fi/id/languages/fin |
|
ethesis.language |
Finnish |
en |
ethesis.language |
suomi |
fi |
ethesis.language |
finska |
sv |
ethesis.thesistype |
pro gradu-avhandlingar |
sv |
ethesis.thesistype |
pro gradu -tutkielmat |
fi |
ethesis.thesistype |
master's thesis |
en |
ethesis.thesistype.URI |
http://data.hulib.helsinki.fi/id/thesistypes/mastersthesis |
|
dct.identifier.urn |
URN:NBN:fi-fe2017112251612 |
|
dc.type.dcmitype |
Text |
|