Skip to main content
Login | Suomeksi | På svenska | In English

Elliptisen osittaisdifferentiaaliyhtälön heikon ratkaisun säännöllisyys

Show simple item record

dc.date.accessioned 2014-02-26T08:13:52Z und
dc.date.accessioned 2017-10-24T12:21:24Z
dc.date.available 2014-02-26T08:13:52Z und
dc.date.available 2017-10-24T12:21:24Z
dc.date.issued 2014-02-26T08:13:52Z
dc.identifier.uri http://radr.hulib.helsinki.fi/handle/10138.1/3522 und
dc.identifier.uri http://hdl.handle.net/10138.1/3522
dc.title Elliptisen osittaisdifferentiaaliyhtälön heikon ratkaisun säännöllisyys fi
ethesis.discipline Mathematics en
ethesis.discipline Matematiikka fi
ethesis.discipline Matematik sv
ethesis.discipline.URI http://data.hulib.helsinki.fi/id/44bc4f03-6035-4697-993b-cfc4cea667eb
ethesis.department.URI http://data.hulib.helsinki.fi/id/61364eb4-647a-40e2-8539-11c5c0af8dc2
ethesis.department Institutionen för matematik och statistik sv
ethesis.department Department of Mathematics and Statistics en
ethesis.department Matematiikan ja tilastotieteen laitos fi
ethesis.faculty Matematisk-naturvetenskapliga fakulteten sv
ethesis.faculty Matemaattis-luonnontieteellinen tiedekunta fi
ethesis.faculty Faculty of Science en
ethesis.faculty.URI http://data.hulib.helsinki.fi/id/8d59209f-6614-4edd-9744-1ebdaf1d13ca
ethesis.university.URI http://data.hulib.helsinki.fi/id/50ae46d8-7ba9-4821-877c-c994c78b0d97
ethesis.university Helsingfors universitet sv
ethesis.university University of Helsinki en
ethesis.university Helsingin yliopisto fi
dct.creator Tevanlinna, Aapo Antero
dct.issued 2014
dct.language.ISO639-2 fin
dct.abstract Elliptisillä osittaisdifferentiaaliyhtälöillä on tärkeä rooli eri ilmiöiden mallinnuksessa. Klassisesti ajatellen ilmiötä mallintavan differentiaaliyhtälön ratkaisun on vaadittu olevan klassisesti derivoituva. Tästä vaatimuksesta voidaan kuitenkin luopua. Ratkaisun kasite yleistetään Lp-avaruuksien, tarkemmin Sobolev-avaruuksien, teorioiden avulla. Yleistetylle ratkaisulle käytetään nimitystä heikko ratkaisu. Luvussa 1 käsitellään Sobolev-avaruudet, jotka tarjoavat pohjan heikkojen ratkaisujen käsitteelle. Painopiste Sobolev-avaruuksien teoriassa on upotuslauseissa, joilla osoitetaan elliptisen osittaisdifferentiaaliyhtälön määrittävän operaattorin spektri diskreetiksi. Lisäksi upotuslauseita voi käyttää osoittamaan heikon ratkaisun klassinen derivoituvuus tietyissä tapauksissa. Luvussa 2 esitellään miten elliptiset osittaisdifferentiaaliyhtälöiden ratkaisun käsite saadaan yleistettyä. Sen jälkeen osoitetaan Hilbert-avaruuksien teorian avulla, että heikkoja ratkaisuja on olemassa. Lopuksi tutkitaan heikkojen ratkaisujen säännöllisyyttä ja klassista derivoituvuutta riippuen annetun osttaisdifferentiaaliyhtälöprobleeman alkuasetelmista. fi
dct.language fi
ethesis.language.URI http://data.hulib.helsinki.fi/id/languages/fin
ethesis.language Finnish en
ethesis.language suomi fi
ethesis.language finska sv
ethesis.thesistype pro gradu-avhandlingar sv
ethesis.thesistype pro gradu -tutkielmat fi
ethesis.thesistype master's thesis en
ethesis.thesistype.URI http://data.hulib.helsinki.fi/id/thesistypes/mastersthesis
dct.identifier.urn URN:NBN:fi-fe2017112251612
dc.type.dcmitype Text

Files in this item

Files Size Format View
WeakSolutionsAndRegularity.pdf 576.4Kb PDF

This item appears in the following Collection(s)

Show simple item record