Skip to main content
Login | Suomeksi | På svenska | In English

Frequency Stability and Selectivity of a Singly Resonant Continuous-wave Optical Parametric Oscillator

Show simple item record

dc.date.accessioned 2014-11-06T13:11:04Z und
dc.date.accessioned 2017-10-24T12:19:50Z
dc.date.available 2014-11-06T13:11:04Z und
dc.date.available 2017-10-24T12:19:50Z
dc.date.issued 2014-11-06T13:11:04Z
dc.identifier.uri http://radr.hulib.helsinki.fi/handle/10138.1/4251 und
dc.identifier.uri http://hdl.handle.net/10138.1/4251
dc.title Frequency Stability and Selectivity of a Singly Resonant Continuous-wave Optical Parametric Oscillator en
ethesis.discipline Physical Chemistry en
ethesis.discipline Fysikaalinen kemia fi
ethesis.discipline Fysikalisk kemi sv
ethesis.discipline.URI http://data.hulib.helsinki.fi/id/Ce448602-69e9-456c-b052-430133e5dbe6
ethesis.department.URI http://data.hulib.helsinki.fi/id/c2dd677c-da9c-4011-94b0-27b1585ac1cb
ethesis.department Kemiska institutionen sv
ethesis.department Department of Chemistry en
ethesis.department Kemian laitos fi
ethesis.faculty Matematisk-naturvetenskapliga fakulteten sv
ethesis.faculty Matemaattis-luonnontieteellinen tiedekunta fi
ethesis.faculty Faculty of Science en
ethesis.faculty.URI http://data.hulib.helsinki.fi/id/8d59209f-6614-4edd-9744-1ebdaf1d13ca
ethesis.university.URI http://data.hulib.helsinki.fi/id/50ae46d8-7ba9-4821-877c-c994c78b0d97
ethesis.university Helsingfors universitet sv
ethesis.university University of Helsinki en
ethesis.university Helsingin yliopisto fi
dct.creator Karhu, Juho
dct.issued 2014
dct.language.ISO639-2 eng
dct.abstract Optical parametric oscillators (OPO) are sources of coherent light, often used to produce laser like light in wavelength regions where ordinary laser operation is challenging. In terms of chemistry, most attractive such a region is in mid-infrared, where strong fundamental vibrational transitions occur. OPOs are based on nonlinear polarization, which some materials exhibit when radiated with strong coherent light and effectively allow transferring optical power from one wavelength region to another. Even a simple OPO setup can offer watt-level of continuous-wave power in mid-infrared. There are ongoing challenges with the stability of OPO output frequency and continuous tuning of the wavelength, both of which are important for a light source used in high-resolution molecular spectroscopy. Theory and literature part of this thesis first covers the fundamentals of the theory behind OPO, centering on a continuous-wave single resonant operation. Afterwards, we look into the more well-known features affecting the stability of the OPO, as well as some common schemes used to combat the instabilities. In the experimental part, we measure and attempt to characterize some features of instabilities we have previously noticed that are not readily explained by known instability sources. The OPO's output wavelength occasionally changes in discrete jumps known as mode hops. There appear to be some preferences to the magnitude of these jumps that do not seem to fit in the current understanding of OPO operation. We followed the frequency changes of a typical singly resonant continuous-wave OPO for longer time periods and offered some possible explanations for the observations. We utilize a few methods to increase the number of mode hops to produce meaningful statistical data. en
dct.language en
ethesis.language.URI http://data.hulib.helsinki.fi/id/languages/eng
ethesis.language English en
ethesis.language englanti fi
ethesis.language engelska sv
ethesis.thesistype pro gradu-avhandlingar sv
ethesis.thesistype pro gradu -tutkielmat fi
ethesis.thesistype master's thesis en
ethesis.thesistype.URI http://data.hulib.helsinki.fi/id/thesistypes/mastersthesis
dct.identifier.urn URN:NBN:fi-fe2017112251750
dc.type.dcmitype Text

Files in this item

Files Size Format View
pro_gradu_jk.pdf 6.336Mb PDF

This item appears in the following Collection(s)

Show simple item record