Työssä rakennetaan yleisten Markovin ketjujen teoriaa tila-avaruudella, joka on euklidisen avaruuden R^d osajoukko. Määrittelemme uusiutumisprosessit ja rakennamme regeneroituvien Markovin ketjujen teorian. Näytämme, että ergodisuusoletuksen toteuttava Markovin ketju on Harris-palautuva, positiivisesti palautuva ja sen tasapainojakauma on yksikäsitteinen. Regeneroituvalla Markovin ketjulla on tila-avaruuden osajoukko, johon osuessaan sillä on mahdollisuus regeneroitua positiivisella todennäköisyydellä. Regeneraation tapahtuessa Markovin ketju unohtaa historiansa ja sitä voidaan tarkastella kuten se käynnistyisi uudestaan tietyllä regeneraatiokonstruktion määrittämällä alkujakaumalla. Harris-palautuvuus ja positiivinen palautuvuus ovat vahvoja regeneraatioajan äärellisyyttä koskevia tuloksia. Teoriaa hyväksikäyttämällä todistetaan kolme keskeistä konvergenssitulosta Markovin ketjuille: suurten lukujen laki, jakauman suppeneminen kokonaisvariaatioetäisyydessä sekä keskeinen raja-arvolause.
Markovin ketjujen teoria rakennetaan siinä laajuudessa, kuin sen avulla on mahdollista ymmärtää Metropolisin ja Hastingsin algoritmin toiminta. On annettu jonkin todennäköisyysjakauman mahdollisesti normalisoimaton tiheysfunktio π ja tehtävänä on muodostaa satunnaisotos kyseisestä jakaumasta. Metropolisin ja Hastingsin algoritmi konstruoi Markovin ketjun, jonka tasapainojakauma on π . Markovin ketjua simuloimalla saadaan siten haluttu otos. Mikäli Markovin ketju toteuttaa riittävät säännöllisyysominaisuudet, on muun muassa suurten lukujen laki ja keskeinen raja-arvolause voimassa, mikä merkitsee, että saatu otos on käytännössä hyödyllinen.
Metropolisin ja Hastingsin algoritmi on esimerkki Markovin ketju Monte Carlo eli MCMC-menetelmistä. Ne mahdollistavat simuloinnin hyvin monimutkaisista jakaumista, joiden hallinta muita menetelmiä käyttäen on vaikeaa tai mahdotonta. Bayesiläinen tilastotiede ja tilastollinen mekaniikka ovat esimerkkejä MCMC-menetelmien tärkeistä sovellusaloista. Esittelemme lyhyesti MCMC-menetelmien soveltamisen perusteet ja suoritamme lyhyen katsauksen menetelmien historiaan. Lopuksi esittelemme soveltavan esimerkin, jossa Metropolisin ja Hastingsin algoritmia käytetään salakirjoitetun tekstin selventämiseen.