Skip to main content
Login | Suomeksi | På svenska | In English

Neutrinos and Thermal Leptogenesis

Show full item record

Title: Neutrinos and Thermal Leptogenesis
Author(s): Taanila, Olli
Contributor: University of Helsinki, Faculty of Science, Department of Physical Sciences
Discipline: Theoretical Physics
Language: English
Acceptance year: 2008
Abstract:
One of the unanswered questions of modern cosmology is the issue of baryogenesis. Why does the universe contain a huge amount of baryons but no antibaryons? What kind of a mechanism can produce this kind of an asymmetry? One theory to explain this problem is leptogenesis. In the theory right-handed neutrinos with heavy Majorana masses are added to the standard model. This addition introduces explicit lepton number violation to the theory. Instead of producing the baryon asymmetry directly, these heavy neutrinos decay in the early universe. If these decays are CP-violating, then they produce lepton number. This lepton number is then partially converted to baryon number by the electroweak sphaleron process. In this work we start by reviewing the current observational data on the amount of baryons in the universe. We also introduce Sakharov's conditions, which are the necessary criteria for any theory of baryogenesis. We review the current data on neutrino oscillation, and explain why this requires the existence of neutrino mass. We introduce the different kinds of mass terms which can be added for neutrinos, and explain how the see-saw mechanism naturally explains the observed mass scales for neutrinos motivating the addition of the Majorana mass term. After introducing leptogenesis qualitatively, we derive the Boltzmann equations governing leptogenesis, and give analytical approximations for them. Finally we review the numerical solutions for these equations, demonstrating the capability of leptogenesis to explain the observed baryon asymmetry. In the appendix simple Feynman rules are given for theories with interactions between both Dirac- and Majorana-fermions and these are applied at the tree level to calculate the parameters relevant for the theory.
Eräs modernin kosmologian ongelmista on baryogenesis. Miksi universumissa on valtava määrä baryoneja mutta ei lainkaan antibaryoneja? Minkälainen mekanismi voi tuottaa tällaisen asymmetrian? Eräs baryogenesiksen teoria on leptogenesis. Tässä mallissa standardimalliin lisätään raskaat oikeakätiset neutriinot, joilla on Majorana-massatermi. Jos näitten raskaitten neutriinoiden hajoaminen rikkoo CP-symmetrian, tuottaa hajoaminen eri määrän leptoneja ja antileptoneja. Sähköheikko sphaleroni muuttaa näin tuotetun leptoniluvun baryoniluvuksi. Opinnäytetyön aluksi esitellään nykyiset havainnot universumin baryonitiheydestä. Tämän jälkeen käydään läpi baryogenesiksen teoriaa yleisesti. Erityisesti esitellään nk. Sakharovin ehdot, jotka ovat välttämättömät ehdot jokaiselle baryogenesiksen teorialle. Käymme läpi neutriino-oskillatioista saadut rajat neutriinojen massoille, jonka jälkeen tarkastellaan erilaisia massatermejä joita voidaan lisätä oikeakätisille neutriinoille. Kiikkumekanismi selittää luonnollisesti neutriinojen havaitun massaskaalan ja motivoi Majorana-massatermin lisäämisen. Leptogenesiksen perusidea esitellään kvalitatiivisesti, jonka jälkeen teorian Boltzmannin yhtälöt johdetaan. Niitä approksimoidaan analyyttisesti sekä esitellään niitten numeerisia ratkaisuja. Nämä ratkaisut osoittavat että leptogenesis kykenee selittämään havaitun baryoniasymmetrian. Liitteessä johdetaan Feynmanin säännöt teorialle jossa on sekä Dirac- että Majorana-fermioneja sekä niiden välisiä vuorovaikutuksia. Näitä sääntöjä soveltaen teorialle relevantteja parametrejä johdetaan puutasolla.


Files in this item

Files Size Format View
neutrino.pdf 459.7Kb PDF

This item appears in the following Collection(s)

Show full item record